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Chapter 1

Introduction

The National Institute of Healths NHGRI publishes information (see Figure 1) describing the de-
velopment of computing costs and DNA sequencing cost over time [25]. The dramatic gap between
the shrinking sequencing cost and the more of less stable computing costs is a major challenge for
biomedical researchers trying to use next generation DNA sequencing platforms to obtain informa-
tion on microbial communities. Wilkening et al. [43] provide a real currency cost for the analysis
of 100 gigabasepairs of DNA sequence data using BLASTX on Amazon’s EC2 service: 900,000
US Dollars1. A more recent study by University of Maryland researchers [1] allows the compu-
tation of a real currency cost for a terabase of DNA shotgun data using complete metagenome
analysis pipeline at over 5 million dollars per terabase.

However the growth in data enabled by next-generation sequencing platforms also provides an
exciting opportunity for studying microbial communities, 99% of the microbes in which have not
yet been cultured [33]. Cultivation free methods (often summarized as Metagenomics) offer novel
insights into the biology of the vast majority of life on the planet [37].

Three types of metagenomics experiments are commonly used:

1. Environmental clone libraries (functional metagenomics)

Frequently using Sanger sequencing instead of more cost efficient next generation sequenc-
ing.

2. Amplicon studies (single gene studies, 16s rDNA)

Next generation sequencing of PCR amplified ribosomal genes providing a single reference
gene based view of microbial community ecology.

3. Shotgun metagenomics
1This includes only the computation cost, no data transfer cost and was computed using 2009 prices.
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Figure 1.1: The cost for DNA sequencing is shriking. This comparison with Moore’s law roughly
describing the development of computing costs highlights the growing gap between sequence data
and the available analysis resources. Source: NGHRI

The use of next generation technology applied directly to to environmental samples.

Each of these methods have strengths and weaknesses (see [37]) and so do the various sequenc-
ing technologies (see [26]).

To support user-driven analysis of all types of metagenomic data, we have provided MG-RAST
[24] at http://metagenomics.anl.gov. MG-RAST enables researchers to study function
and composition of microbial communities.

The MG-RAST portal offers automated quality control, annotation and comparative analysis
services and archiving service. At the time of writing (May 30, 2013) MG-RAST has completed
the analysis of over 25 Terabasepairs of DNA data in over 78,000 datasets contributed by thousands
of researchers world-wide.

The MG-RAST system provides answers to the following scientific questions:

• Who is out there?

Identifying the composition of microbial composition using either amplicon data for single
genes or deriving community composition from shotgun metagenomic data using sequence
similarities.

• What are they doing?
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Using shotgun data (or metatranscriptomic data) derive the functional complement of a mi-
crobial community using similarity searches against a number of databases.

• Who is doing what?

Based on sequence similarity searches, identify the organisms encoding specific functions.

1.1 Version history

Version 1

The original version of MG-RAST was developed in 2007 by Folker Meyer, Andreas Wilke, Daniel
Paarman, Bob Olson and Rob Edwards. It relied heavily on the SEED [28] environment and
allowed upload of pre-processed 454 and Sanger data.

Version 2

Version 2 released in 2008 had numerous improvements. It was optimized to handle full sized 454
data sets and is the first version of MG-RAST that was not fully SEED based. Version 2.0 used
BLASTX analysis for both gene prediction and functional classification [24].

Version 3

While the previous version of MG-RAST (v2) was widely used, it was limited to datasets smaller
than a few 100 Mbases and comparison of samples was limited to pairwise comparisons. Version
3 is not based on SEED technology, but uses the SEED subsystems as a preferred data source.
Starting with version 3, MG-RAST moved to github.

1.2 Comparison of versions 2 and 3

In the new 3.0 version, datasets of 10s of gigabases can be annotated and comparison of taxa or
functions that differed between samples is now limited by the available screen real estate. Figure
1.2 shows a comparison of the analytical and computational approaches used in MG-RAST v2 and
v3. The major changes are the inclusion of a dedicated gene calling stage using FragGenescan [32],
clustering of predicted proteins at 90% identify using uclust [9] and the use of BLAT [18] for the
computation of similarities. Together with changes in the underlying infrastructure this has allowed
dramatic scaling of the analysis with the limited hardware available.
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Figure 1.2: Overview of processing pipeline in (a) MG-RAST 2 and (b) MG-RAST 3. In the old
pipeline, metadata was rudimentary, compute steps were performed on individual reads on a 40-
node cluster that was tightly coupled to the system, and similarities were computed by BLAST to
yield abundance profiles that could then be compared on a per-sample or per pair basis. In the new
pipeline, rich metadata can be uploaded, normalization and feature prediction are performed, faster
methods such as BLAT are used to compute similarities, and the resulting abundance profiles are
fed into downstream pipelines on the cloud to perform community and metabolic reconstruction
and to allow queries according to rich sample and functional metadata.

Similar to version 2.0, the new version of MG-RAST does not pretend to know the correct
parameters for the transfer of annotations. Instead the user im empowered to choose the best
parameters for their data sets.

The new version of MG-RAST represents a rethinking of core processes and data products, as
well as new user interface metaphors and a redesigned computational infrastructure. MG-RAST
supports a variety of user-driven analyses, including comparisons of many samples, previously too
computationally intensive to support for an open user community.

Scaling to the new workload required changes in two areas: the underlying infrastructure
needed to be re-thought and the analysis pipeline needed to be adapted to address the properties of
the newest sequencing technologies.
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1.3 The MG-RAST team

• Andreas Wilke

• Elizabeth M. Glass

• Jared Bischof

• Daniel Braithwaite

• Mark DSouza

• Wolfgang Gerlach

• Travis Harrison

• Kevin Keegan

• Hunter Matthews

• Tobias Paczian

• Wei Tang

• William L. Trimble

• Jared Wilkening

• Narayan Desai

• Folker Meyer

1.3.1 Contacting the MG-RAST team; the MG-RAST help desk

The MG-RAST project uses a ticket system to manage the interaction with our users.
Dr. Mark D’Souza is managing the help desk interaction with the users, please do not email

him directly but use the address given in Figure 1.3.
We recommend including as much detail as possible into your emails to the help-desk, details

like account names, MG-RAST identifiers will help us identify any issues and speed up resolving
them.

Below is an example of the types of details we’d like to receive:

• your name
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Figure 1.3: The email address for the MG-RAST project. Note that this is inserted into the
document as an image, you will have to type it.

• a clear text description of your problem

• any MG-RAST identifiers (those are the 444xxxx.3 numbers)

• any project numbers

• what browser in which version are you using, if the problem relates to the web site

• what platform was your data created on

• if your data was a failure in the web site, what time did it occur

1.3.2 Past members of the MG-RAST team

The following people were associated with MG-RAST in the past:

• Daniel Paarmann, 2007-2008

• Rob Edwards, 2007-2008

• Mike Kubal, 2007-2008

• Alex Rodriguez, 2007-2008

• Bob Olson, 2007-2009

• Daniela Bartels, 2007-2011

• Yekaterina Dribinsky, 2011

MG-RAST was started by Rob Edwards and Folker Meyer in 2007.
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Chapter 2

Under the hood: The MG-RAST technology
platform and pipeline

2.1 System design aspects

One key aspect of scaling MG-RAST to large numbers of modern NGS datasets is the use of
cloud 1. computing which decouples MG-RAST from its previous dedicated hardware resources.
Using our task server AWE [42] and the SHOCK data management system developed alongside
it we have updated our underlying computational platform using purpose built software platform
optimized for large scale sequence analysis.

The new analytical pipeline for MG-RAST version 3 (see Figure 2.3) is encapsulated and
separated from the data store, enabling far greater scalability.

Combined the changes in infrastructure and pipeline had made the new MG-RAST version 750
times faster than version 2.

2.2 Data model

The MG-RAST data model (see Figure 2.1) is something that changes dramatically to handle the
size of modern next generation sequencing data sets. We have made a number of choices that
reduce the computational and storage burden.

It is important to mention that the size of the derived data products for a next generation data in
MG-RAST set is typically about 10x the size of the actual data set. Individual data sets now reach

1We use the term cloud as a shortcut for Infrastructure as a Service (IaaS)
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up to a Terabase2 with the on disk footprint significantly larger than the basepair count due to the
inefficient nature of FASTQ files, that basically double the on disk size for FASTQ representations.

• The use abundance profiles.

Using abundance profiles where we count the number of occurences of function or taxon per
metagenomic data set is one important factor that keeps the data sets managble. Instead of
growing the data set sizes (often with several hundred million individual sequences per data
set) the data products now are more or less static in size.

• Use a single similarity computing step per feature type.

By running exactly one similarity computation for proteins and another one for rRNA fea-
tures, we have limited the computional requirements.

• The use of clustering of features.

By clustering features at 90% identity, we reduce the number of times we compute on sim-
ilar proteins. Abundant features will be even more efficiently clustered leading to more
compression among for abundant species.

As shown in Figure 2.1 MG-RAST relies on abundance profiles to capture information for each
metagenome.

The following abundance profiles are calculated for every metagenome:

• MD5s

This table represents the number of sequences (clusters) per database entry in the M5nr.

• functions

This table represents a summary of all the MD5s that match a given function.

• ontologies

This table represents a summary of all the MD5s that match a given hierarchy entry.

• organisms

This table represents a summary of all MD5s that match a given taxon entry.

• LCAs

The static helper tables (show in blue in figure 2.2) help keep the main tables smaller, by
normalizing and providing integer representations for the entities in the abundance profiles.

2This would be for several metagenomes that are part of the JGI Prairie pilot.
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Figure 2.1: The MG-RAST v3 data model.
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Figure 2.2: The analysis database schema, shows the static objects in blue and the per metagenome
(variable) objects in green.
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Figure 2.3: Details of the analysis pipeline for MG-RAST version 3.x.

2.3 Details on the new MG-RAST pipeline

The pipeline shown in Figure 2.3) contains a significant number of improvements over version 3.0.
Using the M5NR [41] the new pipeline computes results against many reference databases instead
of only SEED. Several key algorithmic improvements were needed to support the flood of user-
generated data (see Figure 2.4). Using a dedicated software to perform gene prediction instead
of using a similarity based approach reduces runtime requirements, the additional clustering of
proteins at 90% identity reduces data while preserving biological signal.

Due to the amount of sequence data submitted to MG-RAST (see Figure 2.4) only protein
coding genes and ribosomal RNA (rRNA) genes will be annotated by the pipeline.

Below we describe each step of the pipeline in some detail, all data sets generated by the
individual stages of the processing pipeline are made available as downloads. Appendix A lists the
available files for each data set.

2.3.1 Preprocessing

After upload, data is pre-processed using SolexaQA [7] to trim low quality regions from FASTQ
data. Platform specific approaches are used for 454 data submitted in FASTA format: reads more
than than two standard deviations away from the mean read length are discarded following [13]. All
sequences submitted to the system are available but discarded reads will not be analyzed further.

16



Figure 2.4: The sizes of MG-RAST jobs per month in gigabasepairs.

2.3.2 Dereplication

For shotgun metagenome and shotgun metatranscriptome data sets we perform a de-replication
step. We use a simple k-mer based approach to rapidly identify all 20 character prefix identical
sequences. This step is required to remove to remove artificial duplicate reads (ADRs) [12]. Instead
of simply discarding the ADRs, we set them aside and use them later.

We note that de-replication is not suitable for amplicon data sets that are likely to share common
pre-fixes.

2.3.3 DRISEE

MG-RAST version 3 uses DRISEE [17] to analyze the sets of Artificial Duplicate Reads [12]
and determine the degree of variation among prefix identical sequences derived from the same
template. See below for details.

2.3.4 Screening

The pipeline provides the option to remove reads that are near-exact matches to the genomes of
a handful of model organisms, including fly, mouse, cow, and human. The screening stage uses
bowtie [20] and only reads that do not match the model organisms pass into the next stage of the
annotation pipeline.

Note that this option will remove all reads similar to the human genome and render them
inaccessible. This decision was made to avoid storing any human DNA on MG-RAST.
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2.3.5 Gene Calling

While the previous version of MG-RAST used similarity-based gene predictions, this approach
is significantly more expensive computationally than de-novo gene prediction. After an in depth
investigation of tool performance [38], we have moved to a machine learning approach: FragGe-
neScan [32]. Using this approach we can now predict coding regions in DNA sequences of 75 bp
and longer. Our novel approach also enables the analysis of user provided assembled contigs.

It is important to note that FragGeneScan is trained for prokaryotes only. While it will identify
proteins for eukaryotic sequences, the results should be viewed as more or less random.

2.3.6 AA Clustering

MG-RAST builds clusters of proteins at the 90% identity level using the uclust [9] implementation
in QIIME [5] preserving the relative abundances. These clusters greatly reduce the computational
burden of comparing all pairs of short reads while clustering at 90% identity preserves sufficient
biological signal.

2.3.7 Protein Identification

Once created, a representative (the longest sequence) for each cluster is subjected to similarity
analysis, instead of BLAST we use sBLAT, an implementation of the BLAT algorithm [18], which
we parallelized using OpenMPI [11] for this work.

Once the similarities are computed we present reconstructions of the species content of the sam-
ple based on the similarity results. We reconstruct the putative species composition of the sample
by looking at the phylogenetic origin of the database sequences hit by the similarity searches.

2.3.8 Annotation Mapping

Sequence similarity searches are computed against a protein database derived from the M5NR
[41], which provides a non-redundant integration of many databases (GenBank, [3], SEED [28],
IMG [22], UniProt [21], KEGG [16] and eggNOGs [15]). Unlike MG-RAST 2, which relied
solely on SEED, MG-RAST now supports many complementary views into the data with one
similarity search, including different functional hierarchies: SEED Subsystems, IMG terms, COG
[36], eggNOGs [15] and ontologies such as GO (Gene Ontology Consortium, 2013). Users can
easily change views without recomputation. For example COG and KEGG views can be displayed,
which both show the relative abundances of histidine biosynthesis in a dataset of four cow rumen
metagenomes.
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2.3.9 Abundance Profiles

Anbundance profiles are the primary data product that MG-RAST’s user interface uses to display
information on the data sets. Abundance profiles functional and taxonomic information.

Using the abundance profiles the MG-RAST systems deffers making a decision on when to
transfer annotations. As there is no well defined threshold that is acceptable for all use-cases, the
abundance profiles contain all similarities and require their users to set cut-off values.

The threshold for annotation transfer can be set using the following parameters:

• e-value

• percent identity

• minimal alignment length

The taxonomic profiles use the NCBI taxnomy, all taxonomic information is projected against
this data. The functional profile are available for data sources that provide hierarchical information.
These are currently:

• SEED Subsystems

The SEED Subsystems [28] represent an independent re-annotation effort that powers e.g.
the RAST [2] effort. Manual curation of subsystems makes them an extremely valuable data
source.

Subsystems represent a hierarchy:

1. Subsystem level 1 – highest level

2. Subsystem level 2 –

3. Subsystem level 3 – similar to a KEGG pathway

4. Subsystem level 4 – this is the actual functional assignment to the feature in question

The page at http://pubseed.theseed.org//SubsysEditor.cgi allows brows-
ing the Subsystems.

• KEGG Orthologues

We use the KEGG [16] enzyme number hierarchy to implement a four level hierarchy

1. KEGG level 1 – first digit of the EC number (EC:X.*.*.*)

2. KEGG level 2 – the first two digits of the EC number (EC:X.Y.*.*)
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3. KEGG level 3 – the first three digits of the EC number (EC:X:Y:Z:.*)

4. KEGG level 4 – the entire four digits EC number...

We note that KEGG data is no longer available for free download and we thus have to rely
on using the latest freely downloadable version of the data.

The high level KEGG categories are:

1. Cellular Processes

2. Environmental Information Processing

3. Genetic Information Processing

4. Human Diseases

5. Metabolism

6. Organisational Systems

• COG and EGGNOG categories The high level COG and EGGNOG categories are:

1. Cellular Processes

2. Information Storage and Processing

3. Metabolism

4. Poorly Characterized

We note that for most metagenomes the coverage of each of the four namespaces is quite
different. The ”Source hit Distribution” (see 3.6.1.2) provides information on how many
sequences per data set were found for each database.

2.4 The rRNA pipeline

rRNA reads are identified using a simple rRNA detection pipeline and are searched in a separate
flow in the pipeline.

2.4.1 rRNA detection

An initial BLAT [18] search against a reduced RNA database efficiently identifies RNA.
The reduced database is a 90% identity clustered version of the Silva database and is merely

used to rapidly identify sequences with similarities to ribosomal RNA.
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2.4.2 rRNA CLUSTERING

The rRNA-similar reads are then clustered at 97% identity and the longest sequence is picked as
the cluster representative.

2.4.3 rRNA IDENTIFICATION

A BLAT similarity search is performed for the longest cluster representative against the M5rna
database, integrating SILVA [29], Greengenes [8] and RDP [6].

2.5 Quality Assessment

The MG-RAST pipeline offers a variety of summaries of technical aspects of the sequence qual-
ity to enable sequence data triage. These tools include DRISEE for estimating sequence error,
summaries of the spectra of long kmers, and visualizations of the base caller output.

2.5.1 DRISEE, (Duplicate Read Inferred Sequencing Error Estimation)

DRISEE [17] is a method to provide a measure for sequencing error for whole genome shotgun
metagenomic sequence data that is independent of sequencing technology, and accounts for many
of the shortcomings of Phred. It utilizes ADRs (artifactual/artificial duplicate reads) to generate
internal sequence standards from which an overall assessment of sequencing error in a sample is
derived. DRISEE values are normally reported as percent error.

DRISEE values can be used to assess the overall quality of sequence samples. DRISEE data
are presented on the Overview page for each MG-RAST sample for which a DRISEE profile can
be determined. Total DRISEE Error presents the overall DRISEE based assessment of the sample
as a percent error:

TotalDRISEEError = base errors/total bases ⇤ 100
where base errors refers to the sum of DRISEE detected errors and total bases refers to the

sum of all bases considered by DRISEE.
The current implementation of DRISEE is not suitable for amplicon sequencing data, or other

samples that may contain natural duplicated sequences (e.g. eukaryotic DNA where gene duplica-
tion and other forms of highly repetitive sequences are common) in high abundance.
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2.5.2 Kmer profiles

k-mer digests are an annotation-independent method to describe sequence datasets that can support
inferences about genome size and coverage. Here the overview page presents several visualizations
of the kmer spectrum of each dataset, evaluated at k=15.

Three visualizations provided of the kmer spectrum are the kmer spectrum, kmer rank abun-
dance, and ranked kmer consumed. All three graphs represent the same spectrum, but in different
ways. The kmer spectrum plots the number of distinct kmers against kmer coverage. The kmer
coverage is equivalent to number of observations of each kmer. The kmer rank abundance plots
the relationship between kmer coverage and the kmer rankanswering the quesiton what is the cov-
erage of the nth most-abundant kmer. Ranked kmer consumed plots the largest fraction of the data
explained by the nth most abundant kmers only.

2.5.3 Nucleotide histograms

These graphs show the fraction of base pairs of each type (A, C, G, T, or ambiguous base N) at
each position starting from the beginning of each read. Amplicon datasets (see Figure 2.5) should
show biased distributions of bases at each position, reflecting both conservation and variability in
the recovered sequences:

Figure 2.5: Nucleotide histogram with biased distributions typical for an amplicon data set

Shotgun datasets should have roughly equal proportions of A, T, G and C basecalls, indepen-
dent of position in the read as shown in Figure 2.6.

Vertical bars at the beginning of the read indicate untrimmed (see Figure 2.7), contiguous
barcodes. Gene calling via FragGeneScan [32] and RNA similarity searches are not impacted by
the presence of barcodes. However if a significant fraction of the reads is consumed by barcodes it
reduces the biological information contained in the reads.

If a shotgun dataset has clear patterns in the data (see Figure 2.8, this indicates likely contami-
nation with artificial sequences. This dataset had a large fraction of adapter dimers:
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Figure 2.6: Nucleotide histogram showing ideal distributions typical for a shotgun metagenome.

Figure 2.7: Nucleotide histogram with untrimmed barcodes.

2.6 Representative hit, best hit, and Lowest Common Ancestor
interpretation

MG-RAST searches the non-redundant M5NR and M5RNA databases in which each sequence is
unique. These two databases are built from multiple sequence database sources and the individ-
ual sequences may occur multiple times in different strains and species (and sometimes genera)
with 100% identity. In these circumstances, choosing the right taxonomic information is not a
straightforward process.

To optimally serve a number of different use cases, we have implemented three different ways
of finding the right function or taxon information. This impacts the end-user experience as they
have three different methods to choose the number of hits reported for a given sequence in their
data set. The details on the three different classification functions implemented are below:

Figure 2.8: Nucleotide histogram with contamination.
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2.6.1 Best Hit

The best hit classification reports the functional and taxonomic annotation of the best hit in the
M5NR for each feature. In those cases where the similarity search yields multiple same-scoring
hits for a feature, we do not choose any single correct label. For this reason we have decided to
double count all annotations with identical match properties and leave determination of truth to
our users. While this approach aims to inform about the functional and taxonomic potential of a
microbial community by preserving all information, subsequent analysis can be biased because of
a single feature having multiple annotations, leading to inflated hit counts. If you are looking for a
specific species or function in your results, the best hit function is likely what you are looking for.

2.6.2 Representative Hit

The representative hit classification selects a single unambiguous annotation for each feature. The
annotation is based on the first hit in the homology search and the first annotation for that hit in
our database. This makes counts additive across functional and taxonomic levels and thus allows
for example to compare functional and taxonomic profiles of different metagenomes.

2.6.3 Lowest Common Ancestor (LCA)

To avoid the problem of multiple taxonomic annotations for a single feature we provide taxo-
nomic annotations based on the widely used LCA-method (lowest common ancestor) introduced
by MEGAN [14]. In this method all hits that have a bit score close to the bit score of the best hit
are collected. The taxonomic annotation of the feature is then determined by computing the LCA
of all species in this set. This replaces all taxonomic annotations from ambiguous hits with a single
higher level annotation in the NCBI taxonomy tree.

The number of hits (occurrences of the input sequence in the database) may be inflated if the
best hit filter is used, or your favorite species might be missing despite a very similar sequence
similarity result if using the representative hit classifier function (in fact 100% identical match to
your favorite species exists).

One way to consider both representative and best hit is that they over-interpret the available
evidence, with the LCA classifier function any input sequence is only classified down to a trust-
worthy taxonomic level. While naively this seems to be the best function to choose in all cases as
it classifies sequences to varying depths, this causes problems for downstream analysis tools that
might rely on everything being classified to the same level.
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2.7 Why dont the numbers of annotations add up to the num-
ber of reads ?

The MG-RAST v3 annotation pipeline does not usually provide a single annotation for each sub-
mitted fragment of DNA. There are steps in the pipeline that map one read to multiple annotations
and one annotation to multiple reads. These steps are a consequence of genome structure, pipeline
engineering, and the character of the sequence databases that MG-RAST uses for annotation.

The first step that is not one-to-one is gene prediction. Long reads (¿400bp) and contigs can
contain pieces of two or more microbial genes; when the gene caller makes this prediction, the
multiple predicted protein sequences (called fragments) are annotated separately.

There is an intermediate clustering step that identifies sequences at 90% amino acid identity
and performs one search for each cluster. Sequences that do not fall into clusters are searched
separately. The abundance column in the MG-RAST tables presents the estimate of the number
of sequences that contain a given annotation, found by multiplying each selected database match
(hit) by the number of representatives in each cluster. The final step that is not one-to-one is the
annotation process itself. Sequences can exist in the underlying data sources many times with
different labels. When those sequence are the best hit similarity, we do not have a principled way
to choosing the correct label. For this reason we have decided to double count these annotations
and leave determination of truth to our users. Note: Even when considering a single data source,
double-counting can occur depending on the consistency of annotations. Also note, Hits refers to
the number of unique database sequences that were found in the similarity search, NOT the number
of reads. The hit count can be smaller than the number of reads because of clustering or larger due
to double counting.

2.8 Metadata, Publishing and Sharing

As mentioned above MG-RAST is both an analytical platform and a data integration. To enable
data re-use for e.g. metaanalyses we require that all data being made available to third parties con-
tain at least minimal metadata. The MG-RAST team has decided to follow the minimal checklist
approach used by the Genomics Standards Consortium (GSC) [10].

2.8.1 Metadata

While the GSC provide a GCDML [19] encoding this XML based format is more useful to pro-
grammers than to end users submitting data.
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We have therefore elected to use spreadsheets to transport metadata. Specifically we use MIxS
(Minimum information about any (x) sequence (MIxS) and MIMARKS (Minimum Information
about a MARKer gene Survey) to encode minimal metadata [44].

The metadata describe both origins of samples and provide details on the generation of the
sequence data. While the GSC checklist aims at capturing a minimum of information, MG-RAST
can handle additional metadata if supplied by the user. The metadata is stored in a simple key value
format and is displayed on the Metagenome Overview page.

Once uploaded metadata spreadsheets are validated automatically and users informed of any
problems.

The presence of metadata enables discovery by end-users using contextual metadata. Users
can perform searches like retrieve soil samples from the continental U.S.. If the users have added
additional metadata (domain specific extension) additional queries are enabled e.g. restrict the
results to soils with a specific pH.

2.8.2 Publishing

MG-RAST provides a mechanism to make data and analyses publicly accessible. Only the sub-
mitting user can make data public on MG-RAST. As stated above, metadata is mandatory for data
set publication.

2.8.3 Sharing

In addition to publishing, data and analysis can also be shared with specific users. To share data
with a user simply enter their email address via clicking sharing on the overview page. The dia-
logue shown in Figure 2.9 will allow entering email addresses.

As shown in Figure 2.10 we tend to see data sets sharing between small groups of users.

2.8.4 Identifiers

MG-RAST automatically assigns a unique identifier to every data set submitted. Upon completion
of the automated pipeline data sets can be viewed via the web interface using the identifiers.

The data set identifiers are of the form integer prefix.revision, an example is 4440283.3.
In addition to data sets MG-RAST supports projects (groups of data sets) that can be addressed

with simple numerical project identifiers.
An example: http://metagenomics.anl.gov/linkin.cgi?project=128
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Figure 2.9: The sharing mechanisms requires a valid email address for the user the data is to be
shared with. A list of users with access to the data is displayed at the bottom on the page.

Figure 2.10: Data sets shared in MG-RAST by users (orange dots) are shown as connecting edges.
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2.8.5 Linking to MG-RAST

As future version of MG-RAST may change, we provide a link-in mechanism as a stable way of
linking to MG-RAST. If you need to link out to data sets in MG-RAST the linkin.cgi is the
right way to do it.

http://metagenomics.anl.gov/linkin.cgi?metagenome=

http://metagenomics.anl.gov/linkin.cgi?project=

Figure 2.11: The linkin.cgi mechanism provides stable URLs for linking to MG-RAST.

For example, for the metagenome ID 4440283.3 the URL is: http://metagenomics.
anl.gov/linkin.cgi?metagenome=4440283.3

This URL provides a stable method of linking to your data which does not require the viewer
to have an MG-RAST account. Please do not use the URL you see when you are browsing the site.

By default your data is not visible to others, you will need to explicitly grant permission for it
to be visible to anyone on the internet by making it public through the MG-RAST website.
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Chapter 3

The MG-RAST v3 web interface

The MG-RAST system provides a rich web user interface that covers all aspects of the metagenome
analysis from data upload to ordination analysis. The web interface can also be used for data
discovery. Metagenomic datasets can be easily selected individually or on the basis of filters such
as technology (including read length), quality, sample type, and keyword, with dynamic filtering
of results based on similarity to known reference proteins or taxonomy. For example, a user might
want to perform a search such as (phylum eq actinobacteria and function in KEGG pathway Lysine
Biosynthesis and sample in Ocean) to extract sets of reads matching the appropriate functions
and taxa across metagenomes. The results can be displayed in familiar formats, including bar
charts, trees that incorporate abundance information, heatmaps, or principal components analyses,
or exported in tabular form. The raw or processed data can be recovered via download pages.
Metabolic reconstructions based on mapping to KEGG pathways are also provided.

Sample selection is crucial for understanding large-scale patterns when multiple metagenomes
are compared. Accordingly, MG-RAST supports MIxS and MIMARKS (Yilmaz, 2011) (as well as
domain-specific plug-ins for specialized environments not extending the minimal GSC standards);
several projects, including TerraGenome, HMP, TARA, and EMP, use these GSC standards, en-
abling standardized queries that integrate new samples into these massive datasets. An example
query using the metadata browser, enabling the user to interrogate the existing pool of public data
sets for a Biome of interest (e.g. Hot springs) and performing comparisons and a search for or-
ganisms encoding a specific gene function (e.g. Beta-lactamase or Aldo/keto reductase; see Figure
3.1.

One key aspect of the MG-RAST approach is the creation of smart data products enabling
the user at the time of analysis to determine the best parameters for e.g. a comparison between
samples. This is done without the need for re-computation of results.
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Figure 3.1: a) Using the web interface for a search of metagenomes for microbial mats in hot-
springs (GSC-MIMS-Keywords Biome=hotspring; microbial mat) we find 6 metagenomes (refs:
4443745.3, 4443746.3, 4443747.3, 4443749.3, 4443750.3, 4443762.3). b) Initial comparison re-
veals some differences in protein functional class abundance (using SEED subsystens level 1). C)
From the PCoA plot using normalized counts of functional SEED Subsystem based functional
annotations (level 2) and Bray-Curtis as metric, we attempt to find differences between two sim-
ilar datasets (MG-RAST-IDs: 444749.3, 4443762.3). d) Using exported tables with functional
annotations and taxonomic mapping we analyze the distribution of organisms observed to contain
Beta-lactamase and plot the abundance per species for two distinct samples.
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3.1 Technical details

3.1.1 Browser requirements

The current web interface for MG-RAST is being developed for recent versions of Firefox. If you
are using another browser please understand that some or all of the web site will not function.

We understand that this may not be your favorite (or institutionally prescribed) browser, but
writing interactive web sites for many browsers is hard. While we are aiming to create a multi-
browser version of the web interface, the current version is limited to Firefox.

3.1.2 Downloading figures

Almost all figures and tables are downloadable into either graphics or spreadsheets. Please look
for a download chart data link next to the graphic.

3.2 Sitemap for MG-RAST

The MG-RAST web site (as shown in Figure 3.2) is rather complex and offers a lot of different
options.

In addition to the home page, the site at http://metagenomics.anl.gov has 5 main
pages (shown in blue in Figure 3.2).

• Download page

This page lists all publicly available data for download. The data is structured into projects.

• the Browse page

This page allows interactive browsing of all data sets and is powered by metadata.

• the Search page

The search page allows identifier, taxonomy and function driven searches against all public
data.

• the Analysis page

The Analysis page enables comparisons between data sets and in depth analyses.

• the Upload page

This is allowing users to provide their samples and metadata to MG-RAST. More details on
uploading are below.
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• the Metagenome Overview page

For each indivual data set this page provides an overview.

Figure 3.2: The sitemap for the MG-RAST version 3 web site. On the site map the main pages are
shown in blue, management pages in orange. The green boxes represent pages that are not directly
accessible from the home page.

It is important to mention that if you want to create links to the MG-RAST web site you should
use the linkin mechanism instead of linking to any web page directly. All pages intended for users
to create external links to provide the linkin feature.

3.3 The Upload and Metadata pages

Data and Metadata can be uploaded in the form of spreadsheets along with the sequence data using
both the ftp and the http protocols. The web uploader will automatically split larger files and allow
parallel uploads.

MG-RAST supports datasets that are augmented with rich metadata using the standards and
technology developed by the GSC.

Each user has a temporary storage location inside the MG-RAST system. This inbox provides
temporary storage for data and metadata to be submitted to the system. Using the inbox users can
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extract compressed files, convert a number of vendor specific formats to MG-RAST submission
compliant formats and obtain an MD5 checksum for verifying that transmission to MG-RAST has
not altered the data.

The web uploader has been optimized for large data sets of over 100GBp (gigabasepairs) often
resulting in file sizes in excess of 150 GB.

3.4 The Browse page – Metadata enabled data discovery

The Metagenome Browse page lists all data sets visible to the user.1 This page also provides an
overview of the non-public data sets submitted by the user or shared with them.

Figure 3.3 shows the interactive metagenome browse table, which provides an interactive
graphical means to discover data based on technical data (e.g. sequence type or data set size)
or metadata (e.g. location or biome).

3.5 Project Page

Shown in Figure 3.4 the project page provides a list of data sets and metadata for a project. The
table at the bottom of the project page provides access to the individual metagenomes via clicking
on the identifiers in the first column. In addition the final column provides downloads for metadata,
submitted data and the analysis results via the three labelled arrows.

For the data set owners the project page provides editing capability using a number of menu
entries at the top of the page. Figure 3.5 shows all available options.

• Share Project

Make the data in this project avaialble to third parties via sending them access tokens.

• Add Jobs

Add additional data sets to this project.

• Edit Project data

Edit the contents of this page.

• Upload info

Upload information to be displayed on this page.
1Datasets in MG-RAST are private by default, but the submitting user has the option to share datasets with specific

users or to make datasets public.

33



Figure 3.3: The Metagenome Browser page enables sorting and data search. Users can select
the metadata they wish to view and search. Some of the metadata is hidden by default and can be
viewed by clicking on the header on the right side of the table and selecting the desired columns,
this can also be used to hide unwanted columns.

34



Figure 3.4: The project page provides a summary of all data in the project and provides an
interface for downloads.
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Figure 3.5: If you are the data set owner, the project page will display these buttons.

Figure 3.6: Top of the metagenome overview page.

• Upload metadata

Upload a metadata spreadsheet for the project.

• Export metadata2

Export the metadata spreadsheet for this project.

3.6 The Overview Page

MG-RAST automatically creates an individual summary page for each dataset. This metagenome
overview page provides a summary of the annotations for a single data set. The page is made
available by the automated pipeline once the computation is finished.

This page is a good starting for looking at a particular data set and provides a signifcant amount
of information on technical details and biological content.

The page is intended as a single point of reference for metadata, quality and data. It also
provides an initial overview of the analysis results for individual data sets with default parameters.
Further analysis are available on the Analysis page.

3.6.1 The technical part of the overview page – Details on sequencing and
analysis

The Overview page provides the MG-RAST ID for a data set, a unique identifier that is usable as
accession number for publications. Additional information like the Name of the submitting PI and

2This option is available to non data set owners
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Figure 3.7: Sequences to the pipeline are classified into one of 5 categories. grey = failed the QC,
red = unknown sequences, yellow = unknown function but protein coding, green = protein coding
with known function and blue = ribosomal RNA. For this example over 50% of sequences were
either filtered by QC or failed to be recognized as either protein coding or ribosomal.

organization and a user provided metagenome name are displayed at the top of the page as well.
A static URL for linking to the system that will be stable across changes to the MG-RAST web
interface is provided as additional information (Figure 3.6).

We provide an automatically generated paragraph of text describing the submitted data and the
results computed by the pipeline. Via the project information we display additional information
provided by the data submitters at the time of submission or later.

One of the key diagrams in MG-RAST is the sequence breakdown pie chart (Figure 3.7) clas-
sifying the submitted sequences submitted into several categories according to their annotation
status. As detailed in the description of the MG-RAST v3 pipeline above, the features annotated
in MG-RAST are protein coding genes and ribosomal proteins.

It should be noted that for performance reasons no other sequence features are annotated by the
default pipeline. Other feature types e.g. small RNAs or regulatory motifs (e.g. CRISPRS [4]) will
not only require significantly higher computational resources but also are frequently not supported
by the unassembled short reads that comprise the vast majority of todays metagenomic data in
MG-RAST. The quality of the sequence data coming from next generation instruments requires
careful design of experiments, lest the sensitivity of the methods is greater than the signal to noise
ratio of the data supports.

The overview page also provides metadata (data describing data) for each data set to the extent
that data has been made available. Metadata enables other researchers to discover datasets and
compare annotations. MG-RAST requires standard metadata for data sharing and data publication.
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Figure 3.8: The information from the GSC MIxS checklist providing minimal metadata on the
sample.

This is implemented using the standards developed by the Genomics Standards Consortium. Figure
3.8 shows the metadata summary for a data set.

All metadata stored for a specific dataset is available in MG-RAST, we merely display a stan-
dardized subset in this table. A link at the bottom of the table (more metadata) provides access
to a table with the complete metadata. This enables users to provide extended metadata going
beyond the GSC minimal standards. A mechanism to provide community consensus extensions to
the minimal checklists are the environmental packages are explicitly encouraged, but not required
when using MG-RAST.

3.6.1.1 Metagenome QC

The analysis flowchart and analysis statistics provide an overview of the number of sequences at
each stage in the pipeline. (Figure ??). The text block next to the analysis flowchart presents the
numbers next to their definitions.
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Figure 3.9: The analysis flowchart provides an overview of the fractions of sequences surviving
the various steps of the automated analysis. In this case about 20% of sequences were filtered dur-
ing quality control. From the remaining 37,122,128 sequences, 53.5% were predicted to be protein
coding, 5.5% hit ribosomal RNA. From the predicted proteins, 76.8% could be annotated with a
putative protein function. Out of 32 million annotated proteins, 24 million have been assigned to a
functional classification (SEED, COG, EggNOG, KEEG), representing 84% of the reads.
labelfig:analysis-flowchart
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Figure 3.10: The graph shows the number of features in this dataset that were annotated by the
different databases. The bars representing annotated reads are colored by e-value range. Different
databases have different numbers of hits, but can also have different types of annotation data.

3.6.1.2 Source hits distribution

The source hits distribution shows what percentage of the predicted protein features could be an-
notated with similarity to a protein of known function and which database those functions were
from. In addition ribosomal RNA genes are also mapped to the rRNA databases.

The graph 3.10 shows the number of features in this dataset that were annotated by the different
databases. These include protein databases, protein databases with functional hierarchy informa-
tion, and ribosomal RNA databases.

In addition this display will print the number of records in the M5NR protein database and in
the M5RNA ribosomal databases.

3.6.1.3 yet more statistics in Technical Data

This part provides a quick links to a general statistical overview of the different analysis steps
performed (see Analysis flowchart), a comprehensive list of all metadata for the data set, sequence
length and GC distributions and a breakdown of blat hits per data source (e.g. hits to RefSeq [30],
UniProt [21] or SEED [28]).

The Analysis Statistics and Analysis Flowchart provide sequence statistics for the main steps in
the pipeline from raw data to annotation, describing the transformation of the data between steps.

Sequence length and GC histograms display the distribution before and after quality control
steps.

40



Figure 3.11: Organism breakdown: Sample rank abundance plot by phylum.

Metadata is presented in a searchable table which contains contextual metadata describing
sample location, acquisition, library construction and sequencing using GSC compliant metadata.
All metadata can be downloaded from the table.

3.6.2 The biological part of the Overview page – Organism Breakdown

The taxonomic hit distribution display breaks down taxonomic units into a series of pie charts of
all the annotations grouped at various taxonomic ranks (Domain, Phylum, Class, Order, Family,
Genus). The subsets are selectable for downstream analysis, this also enables downloads of subsets
of reads, e.g. those hitting a specific taxonomic unit.

3.6.2.1 Rank abundance

The rank abundance plot ((Figure 3.11) provides a rank-ordered list of taxonomic units at a user-
defined taxonomic level, ordered by their abundance in the annotations.

3.6.2.2 Rarefaction

The rarefaction curve of annotated species richness is a plot (see 3.12 of the total number of distinct
species annotations as a function of the number of sequences sampled. The slope of the right-hand
part of the curve is related to the fraction of sampled species that are rare. When the rarefaction
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Figure 3.12: The rarefaction plot shows a curve of annotated species richness. This curve is a
plot of the total number of distinct species annotations as a function of the number of sequences
sampled.

curve is flat, more intensive sampling is likely to yield only few additional species. The rarefaction
curve is derived from the protein taxonomic annotations and is subject to problems stemming from
technical artifacts. These artifacts can be similar to the ones affecting amplicon sequencing [31]
but the process of inferring species from protein similarities may introduce additional uncertainty.

On the left, a steep slope indicates that a large fraction of the species diversity remains to be
discovered. If the curve becomes flatter to the right, a reasonable number of individuals is sampled:
more intensive sampling is likely to yield only few additional species.

Sampling curves generally rise very quickly at first and then level off towards an asymptote as
fewer new species are found per unit of individuals collected. These rarefaction curves are calcu-
lated from the table of species abundance. The curves represent the average number of different
species annotations for subsamples of the the complete dataset.

3.6.2.3 Alpha Diversity

Finally in this section we display an estimate of the alpha diversity based on the taxonomic annota-
tions for the predicted proteins. The alpha diversity is presented in context of other metagenomes
in the same project (see Figure 3.13).

The alpha diversity estimate is a single number that summarizes the distribution of species-
level annotations in a dataset. The Shannon diversity index is an abundance-weighted average of
the logarithm of the relative abundances of annotated species.

We compute the species richness as the antilog of the Shannon diversity:
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Figure 3.13: The alpha diversity plot shows the range of -diversity values in the project the data
set belongs to. The min, max, and mean values are shown, with the standard deviation ranges ( and
2) in different shades. The -diversity of this metagenome is shown in red.

Richness = 10�
P

i
pi log(pi)

where pi are the proportions of annotations in each of the species categories.
Shannon species richess is the antilog of the Shannon index It has units of effective number

of species. Each p is a ratio of the number of annotations for each species to the total number of
annotations and m is the total number of different species annotations.

The species-level annotations are from all the annotation source databases used by MG-RAST.
The table of species and number of observations used to calculate this diversity estimate can be
downloaded under download source data on the overview page.

3.6.2.4 Functional Breakdown

This section contains four pie charts providing a breakdown of the functional categories for KEGG
[16], COG [36], SEED Subsystems [28] and EggNOGs [15]. Clicking on the individual pie chart
slices will save the respective sequences to the workbench.

The relative abundance of sequences per functional category can be downloaded as a spread-
sheet and users can browse the functional breakdowns via the Krona tool [27]integrated in the
page.

A more detailed functional analysis, allowing the user to manipulate parameters for sequence
similarity matches is available via the analysis page.

We note that users can explore subsystems abundance on various levels using the analysis page.
QUESTION:: What are the default parameters used to display these graphs?? BEST HIT

REP HIT?
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Figure 3.14: The glssubsystems function piechart classifies reads into the Subsystem level one
functions. In contrast to the COG, EGGNOG and KEGG classification schemes there are over 20
top level subsystem categories creating a more highly resolved ”fingerprint” for the metagenome.
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3.6.2.5 Taxonomic breakdown

This section contains 6 pie charts representing the break

3.7 Download page

The download page provides all publicly available data sets for download. Three types of data are
available for download:

• metadata

Data describing data in GSC compliant format.

• submitted data

The original user submission

• analysis results

The results of running the MG-RAST pipeline, the list includes all intermediate data products
and is intended to serve as a basis for further analysis outside the MG-RAST pipeline.

Details on the individual files are in A.

3.8 The Search Page

The search page is an additional way to find data sets in MG-RAST. (The other being the Metagenome
Browse page.

The basic function of the Search page is to find data sets that 1) contain a search string in the
metadata (data set name, project name, project description, GSC metadata), or 2) contain specific
functions (e.g. SEED functional roles, SEED subsystems or GenBank annotations or 3) contain
specific organisms. The default search uses all 3 kinds of data. In addition to a google like search
that searches all data fields, we also provide specialized searches in one of the 3 data types. Figure
3.15 shows the result of a metadata search for ”oral health”.

Figure 3.16 shows the results from Figure 3.15 after sorting by metagenome ID.

3.9 The Analysis Page

The MG-RAST annotation pipeline produces a set of annotations for each sample; these an-
notations can be interpreted as functional or taxonomic abundance profiles. The analysis page
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Figure 3.15: Searching for ”oral health” returns 11 data sets for two projects.
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Figure 3.16: The search results from the previous search sorted by projects
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can be used to view these profiles for a single metagenome, or compare profiles from multiple
metagenomes using various visualizations (e.g. heatmap) and statistics (e.g. PCoA , normaliza-
tion).

The page breaks down in three parts following a typical workflow (Figure 3.17):

1. Data type

Selection of an MG-RAST analysis scheme, that is selection of a particular taxonomic or
functional abundance profile mapping. For taxonomic annotations, since there is not always
a unique mapping from hit to annotation, we provide three interpretations: Best Hit, Repre-
sentative Hit and Lowest Common Ancestor as explained in 2.6.

We note that when choosing the LCA annotations, not all downstream tools are available.
This is due to the fact that for the LCA annotations not all sequences will be annotated to the
same level, it returns classifications on different taxonomic levels.

Functional annotations can either be grouped into mappings to functional hierarchies or dis-
played without a hierarchy. In addition the recruitment plot displays the recruitment of
protein sequences against a reference genome.

Each selected data type has data selections and data visualizations specific for it.

2. Data selection

Selection of sample and parameters. This dialog allows the selection of multiple metagenomes
which can be compared undividually, or selected and compared as groups. Comparison is
always relative to the annotation source, e-value and percent identity cutoffs selectable in
this section. In addition to the metagenomes available in MG-RAST, sets of sequences pre-
viously saved in the workbench can be selected for visualization.

3. Data visualization

Data Visualization and Comparison. Depending on the selected profile type, the profiles for
the metagenomes can be visualized and compared using barcharts, trees, spreadsheet like
tables , heatmaps, PCoA, rarefaction plots, Circular recruitment plot and KEGG maps.

The analysis page offers several hit classification schemes that are explained in 2.6.
The data selection dialogue provides access to data sets in four ways. The four categories can

be selected via a pulldown menu.
Once a category is selected, the data browser underneath available metagenomes will display

data of the selected category. The text field under available metagenomes displays the available
data sets or group identifiers.
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Figure 3.17: Using the analysis page is a three step process. First select a profile and hit (see
below) type. Second select a list of metagenomes and set annotation source and similarity param-
eters. Third chose a comparison.

The use of MG-RAST identifiers (e.g. 4447971.3) is possible in the text field underneath
”available metagenomes”.

• the private data

This will display a list of private or shared data sets for browsing under available metagenomes.

• the collections

Collections are used defined sets of metagenomes grouped for easier analysis. This is the
recommended way of working with the analysus page.

• the projects

Projects are global groups of data sets grouped by the submitting user. The project name will
be displayed

• the public data

All public data sets will be displayed.

When using collections or projects, data can also be grouped into one set per collection or
project and subsequently compared added.
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Figure 3.18: A view of the data selection dialogue, with the list of four data categories expanded.

3.9.1 Normalization

Normalization refers to a transformation that attempts to reshape an underlying distribution. A
large number of biological variables exhibit a log-normal distribution, meaning that when you
transform the data with a log transformation, the values exhibit a normal distribution. Log-
transformation of the counts data makes a normalized data product that is more likely to satisfy the
assumptions additional downstream tests like ANOVA or t-tests.

Standardization is a transformation applied to each distribution in a group of distributions so
that all distributions exhibit the same mean and the same standard deviation. This removes some
aspects of inter-sample variability and can make data more comparable. This sort of procedure is
analogous to commonly practiced scaling procedures, but is more robust in that it controls for both
scale and location.

The analysis page calculates the ordination visualizations with either raw or normalized counts,
at the users option. The normalization procedure is to take

normalized value i = log2(raw counts i+ 1)

And then the standardized values are calculated from the normalized values by subtracting the
mean of each samples normalized values and dividing by the standard deviation of each samples
normalized values.

standardized i = (normalized i �mean(normalized i))/stddev(normalized i) You can read
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Figure 3.19: Boxplots of the abundance data for raw values (top) as well as values that have
undergone the normalization and standardization procedure described above (bottom). It is clear
that after normalization and standardization, samples exhibit value distributions that are much
more comparable, and that exhibit a normal distribution; the normalized and standardized data are
suitable for analysis with parametric tests, the raw data are not.

more about these procedures in a number of texts - We recommend Terry Speeds Statistical Anal-
ysis of Gene Expression in Microarray Data [35].

When data exhibit a non-normal, normal or unknown distribution, non-parametric tests (e.g.
Man-Whitney or Kurskal-Wallis) should be used. Boxplots are an easy way to check and the
MG-RAST analysis page provides boxplots of the standardized abundance values for checking the
comparability of samples (Figure 3.19).

3.9.2 Rarefaction

The rarefaction view is only available for taxonomic data. The rarefaction curve of annotated
species richness is a plot (see 3.20 of the total number of distinct species annotations as a function
of the number of sequences sampled. As shown in Figure ?? multiple data sets can be included.

The slope of the right-hand part of the curve is related to the fraction of sampled species that
are rare. When the rarefaction curve is flat, more intensive sampling is likely to yield only few
additional species. The rarefaction curve is derived from the protein taxonomic annotations and is
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Figure 3.20: The rarefaction plot shows a curve of annotated species richness. This curve is a
plot of the total number of distinct species annotations as a function of the number of sequences
sampled.

subject to problems stemming from technical artifacts. These artifacts can be similar to the ones
affecting amplicon sequencing [31] but the process of inferring species from protein similarities
may introduce additional uncertainty.

On the Analysis page the rarefaction plot serves as a means of comparing species richness
between samples in a sampling depth independent way.

On the left, a steep slope indicates that a large fraction of the species diversity remains to be
discovered. If the curve becomes flatter to the right, a reasonable number of individuals is sampled:
more intensive sampling is likely to yield only few additional species.

Sampling curves generally rise very quickly at first and then level off towards an asymptote as
fewer new species are found per unit of individuals collected. These rarefaction curves are calcu-
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Figure 3.21: The options available for coloring the KEGG maps

lated from the table of species abundance. The curves represent the average number of different
species annotations for subsamples of the the complete dataset.

3.9.3 The KEGG Mapper

The KEGG mapper is only available for functional data, it provides the ability to compare data
sets visually on the basis of them mapped onto a KEGG pathway map. Users can select from any
available KEGG pathway map.

Different colors indicate different metagenomic data sets.
The KEGG mapper works by providing two buffers that users can assign data sets to. After

loading the buffers with the intended data sets, the KEGG mapper can highlight parts of the KEGG
map that are present in the data set.

Several combinations of the two data sets can be displayed, those are shown in Figure 3.21.
The KEGG map tool allows the visual comparison of predicted metabolic pathways in metage-

nomic samples. It maps the abundance of identified enzymes onto a KEGG [16] map of functional
pathways. Metagenomes can be assigned into one of two groups and those groups can be visually
compared.

3.9.4 Recruitment plots

The recruitment page allows mapping of protein sequences in a single metagenome onto the com-
plete genome sequences that are represented in the M5NR.

Once the metagenome is selected, the page will provide a list of genomes sorted by the amount
of hits per genome is displayed for the user to choose from (see Figure 3.23).

A circular genome plot or a table will be printed. See Figure 3.24 for an example. The follow-
ing elements are contained in the figure:

• outmost circle: forward strand genes (red: protein, black: RNA)
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Figure 3.22: A comparison of two data sets using the KEGG mapper. Parts of metabolism common
are shown in purple, unique to A are in blue, unique to B in red.

• 2nd circle: contigs for the reference genome

• 2rd circle: reverse strand genes (red: protein, black: RNA)

• innermost circle: abundance information (color coded for evalue)

The table view has the same information as the circular view and can easily be downloaded
into a local spreadsheet. We use RefSeq [30] identifiers for the table as well as RefSEQ functions
because the underlying contig information is present in the GenBank [3] downloads.

The recruitment plot uses the best hit approach.
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Figure 3.23: Selection of a genome to display sorted by number of hits per genome.

3.9.5 The Bar charts

Figure 3.25 shows the bar chart visualization option on the analysis page. One important property
of the page is the built-in ability to drill down by clicking on a specific category. In this example
we have expanded the domain Bacteria to show the normalized abundance (adjusted for sample
sizes) of bacterial phyla. The abundance information displayed can be downloaded into a local
spreadsheet. Once a subselection has been made (e.g. the domain Bacteria selected) data can be
sent to the workbench for detailed analysis.

3.9.6 Tree diagram

The tree diagram allows comparison of data sets against a hierarchy (e.g. Subsystems or the NCBI
taxonomy).

The hierarchy is displayed as a rooted tree and the abundance (normalized for data set size or
raw) for each data set in the various categories is displayed as a bar chart for each category.

By clicking on a category (inside the circle) detailed information can be requested for that
node; see Figure 3.27.

The tree offers another of capabilities via the options shown in Figure 3.28.

• export of a high resolution image

For publication purposes we provide a SVG version of the image.
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Figure 3.24: An example recruitment plot with the parameters from the previous Figure for
Actinomyces viscosus C505.
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Figure 3.25: The bar chart view comparing normalized abundance of taxa. We have expanded the
Bacteria domain to display the next level of the hierarchy.
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Figure 3.26: The tree diagram is a visualization method on the analysis page.
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Figure 3.27: Clicking on a node in the tree diagram will display addition information to the right
of the tree display.

59



Figure 3.28: The options for the tree view.

• re-rooting

The tree display allows zooming in by re-rooting the tree display. For this select an node
inside the tree (turning it red) and select reoot at the selected node. See Figure ??).

• bar chart or stacked chart

The abundances of the hierarchy entries can be displayed as bar charts per node or as a
stacked graph.

• restrict to domain

Is identical to re-rooting the tree for a specific domain.

• maximum level

This setting determines the depth of the tree being displayed.

• color by

Determines the color (if any) used for the out circle of the display.

Figure 3.29 shows the result of changing the display depth and coloring options. The color
is used to group organism visually into order level groups.

3.9.7 Heatmap/Dendrogram

The heatmap/dendrogram (Figure 3.30) is a tool that allows an enormous amount of information
to be presented in a visual form that is amenable to human interpretation. Dendrograms are trees
that indicate similarities between annotation vectors. The MG-RAST heatmap/dendrogram has
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Figure 3.29: A tree view at order level with coloring set to phylum level.

Figure 3.30: Heatmap/dendogram example in MG-RAST. The MG-RAST heatmap/dendrogram
has two dendrograms, one indicating the similarity/dissimilarity among metagenomic samples (x
axis dendrogram) and another to indicate the similarity/dissimilarity among annotation categories
(e.g., functional roles; the y-axis dendrogram).
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two dendrograms, one indicating the similarity/dissimilarity among metagenomic samples (x axis
dendrogram) and another to indicate the similarity/dissimilarity among annotation categories (e.g.,
functional roles; the y-axis dendrogram). A distance metric is evaluated between every possible
pair of sample abundance profiles. A clustering algorithm (e.g ward-based clustering) then pro-
duces the dendrogram trees. Each square in the heatmap dendrogram represents the abundance
level of a single category in a single sample. The values used to generate the heatmap/dendrogram
figure can be downloaded as a table by clicking on the download button.

The barchart and tree tools map raw or normalized abundances onto functional or taxonomic
hierarchies. The barchart tool presents mapping onto the highest category of a hierarchy (e.g.
Domain) and allows a drill down into the hierarchy. In addition reads from a specific level can be
added into the workbench.

3.9.8 Ordination

MG-RAST uses Principle Coordinate Analysis (PCoA) to reduce the dimensionality of compar-
isons of multiple samples that consider functional or taxonomic annotations.

PCoA is a well known method for dimensionality reduction of large data sets. Dimensional-
ity reduction is a process that allows the complex variation found in a large data sets (e.g. the
abundance values of thousands of functional roles or annotated species across dozens of metage-
nomic samples) to be reduced to a much smaller number of variables that can be visualized as
simple 2 or 3 dimensional scatter plots. The plots enable interpretation of the multidimensional
data in a human-friendly presentation. Samples that exhibit similar abundance profiles (taxonomic
or functional) group together, whereas those that differ are found further apart. A key feature of
PCoA based analyses is that users can compare components not just to each other, but to metadata
recorded variables (e.g. sample pH, biome, DNA extraction protocol etc.) to reveal correlations
between extracted variation and metadata-defined characteristics of the samples. It is also possible
to couple PCoA with higher resolution statistical methods to identify individual sample features
(taxa or functions) that drive correlations observed in PCoA visualizations. This can be accom-
plished with permutation based statistics applied directly to the data before calculation of distance
measures used to produce PCoAs, or by applying conventional statistical approaches (e.g. ANOVA
or Kruskal-Wallis test) to groups observed in PCoA based visualizations.

3.9.9 Table

The table tool creates a spreadsheet based abundance table that can be searched and restricted by
the user. Tables can be generated at user-selected levels of phylogenetic or functional resolution.
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Table data can be visualized using Krona [27], can be exported in BIOM [23] format to be used in
other tools, e.g. QIIME [5] or the tables can be exported as tab-separated text.

Abundance tables serve as the basis for all comparative analysis tools in MG-RAST, from
PCoA to heatmap-dendrograms.

We show how to use the taxonomic information derived from an analysis of protein similarities
found for the data set 4447970.3. We are using best hit classifcation, SEED, 105̂, 60% identity and
minimal alignment length of 15 amino acids and selecting table output. The resulting table output
is shown in Figure 3.31.

The following control elements are connected to the table:

• group by

This allows summarizing entries below the level chosen here to be subsumed.

• download table

This will download the entire table as a spreadsheet.

• Krona

This will invoke KRONA [27] with the table data.

• QIIME

Creates a BIOM [23] format file with the data being displayed in the table.

• table size

Changing the number of elements to display for the web page.

Below we explain the columns of the table and the functions available for them. For each
column we allow sorting the table via clicking on the upwards and downwards pointing triangles.

• metagenome

In the case of multiple data sets being displayed, this column allows sorting by metagenome
ID or selecting a single metagenome.

• source

Displays the annotation source for the data being displayed.

• domain

The domain column allows sub selecting from Archaea, Bacteria, Eukarya and Viruses.
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Figure 3.31: A view of the analysis page table.

• phylum, class

Since we have selected to group results at the class level only phylum and class are being dis-
played. The text fields in the colum headers allow subsection (e.g. by entering Acidobacteria
or Actinobacteria in the phylum field). The searches are performed inside the web browser
and are very efficient.

Any subselection will narrow down all data sets being displayed in the table.

Users can elect to have the results grouped by other taxonomy levels, e.g. genus, creating
more colums in the table view.

• abundance

The number of sequences found with the parameters selected matching this taxonomic unit.
(Not the parameters chosen are displayed on top of the table). Clicking on the abundance
displays another page displaying the BLAT alignments underlying the assignments.

The abundance is calculated by multiplying the acutal number of database hits found for the
clusters by the number of cluster members.
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• avg. evalue, avg percent identity, average alignment length

The average values for evalue, percent identity and alignment length

• hits

The number of clusters found for this entity (function or taxon) in the metagenome.

• ...

Allows extending the table to add additional columns.

3.9.10 The workbench

The workbench supports selecting sequence features and submitting them to further analysis or
other analysis. A number of use cases are described below.

An important limitation with the current implementation is the fact that data sent to the work-
bench only exist until you close your current session.

The workbench was designed to allow users to select subsets of the data for comparison or
export.
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Chapter 4

User Manual

4.1 Privacy, identifiers, sharing and publication

Data in MG-RAST is private unless published to everyone or shared with specific users by the
submitter.

Once data is submitted to the pipeline a unique identifier is assigned (see 2.8.4 for details).
The web interface allows sharing and publication of data, requiring the presence of minimal

metadata (see 2.8.1). Data can only be shared once the computation has finished.

4.2 Uploading to MG-RAST

MG-RAST was designed to allow users to upload sequence data directly from next generation
sequencing machines. Data can be in FASTA, FASTQ or SFF format.

All uploaded sequence files must have one of the following extensions:

• .fasta

• .fna

• .fastq

• .fq

• .sff

Compressing large files will reduce the upload time and the chances of a failed upload, you can
use Zip (.zip) and gzip (.gz) as well as tarred gzipped files (.tgz).
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We suggest you upload raw data (in FASTQ or SFF format) and let MG-RAST perform the
quality control step as this will allow us to identify any issues with the sequencing run. Frequently
local quality control will identify some issues but mask others.

It is not neccesary to assemble data prior to upload to MG-RAST, the system has been opti-
mized for short reads and can handle uploads of many hundred gigabytes.

4.2.1 Assembled data with read abundance info

For assembled data (in FASTA format) uploaded to MG-RAST read abundance information for
contigs can be imported as well. The assembled option for the pipeline will attempt to retrieve
read abundance information from the sequence files using the following simple format:

>sequence_number_1_[cov=2]

CTAGCGCACATAGCATTCAGCGTAGCAGTCACTAGTACGTAGTACGTACC

>sequence_number_2_[cov=4]

ACGTAGCTCACTCCAGTAGCAGGTACGTCGAGAAGACGTCTAGTCATCAT

....

The abundance information must be appended without spaces to the end of the sequence name
(also without whitespace) in the format [cov=n] where n is the coverage or abundance of each
contig.

4.2.2 Steps for submission via the web interface

To start uploading data to MG-RAST through the website, click on the up arrow, this opens the
Upload page.

On this page you can upload files, modify the files where needed, add metadata and finally
submit for analysis.

The page is split into two sections, Prepare Data to upload, manipulate and assemble all the files
required for a submission and Submission to create the MG-RAST job(s), set analysis parameters
and start the analysis. Each Section contains subsections which you can click to expand.

4.2.2.1 Prepare Data

4.2.2.1.1 Download metadata spreadsheet template The best time to enter metadata for a
dataset is at this stage and we provide a spreadsheet template which can be filled out with all
the available information. The metadata can be modified at a later date to add information as it
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Technology Rate (bit/s) Time for 1GB Upload
Modem 14.4 (2400 baud) 14.4 kbit/s 154 hours
ADSL Lite 1.5 Mbit/s 1.5 hours
Ethernet 10 Mbit/s 13.33 minutes
T3 44.736 Mbit/s 3 minutes
Fast Ethernet 100 Mbit/s 1.33 minutes

Table 4.1: Summary of upload times

becomes available or to correct errors. While the number of fields in the template are large, the
number of required fields, labelled in red in the template, is small. The template file can be used to
upload metadata for one or multiple samples and submit them to MG-RAST as a single project.

4.2.2.2 Upload files

All files uploaded to MG-RAST should be named using alphanumeric and .- characters without
spaces. Files larger than 50MB should be compressed before upload using gzip (preferable) or
Zip, this will reduce the time taken for the upload of the file which in turn reduces the chance that
the upload will fail.

Types of files: Sequence files FASTA, FASTQ or SFF formats Metadata files filled out spread-
sheet Barcode files The barcode file should be plain text ASCII containing lines with a barcode
sequence followed by a unique filename separated by a tab, with as many lines as necessary for the
barcodes in the sequence file you are submitting.

Click on the Browse button to select the file or files and the upload will begin automatically
after the files are selected.

4.2.2.2.1 Uploading For the actual uploading we use an HTML5 feature [40] that will auto-
matically break up the files into chunks on the client side and send them. Note: This is one of the
reasons we request that you use a recent version of Firefox as older versions might be slower.

Below we provide a summary of observed upload times that might help adjust exectations on
how long the upload should take.

Based on observed values, upload times per 1GB (10**9 bytes) vary from 2 minutes to over an
hour with typical times being 10 to 15 minutes. Your experience will vary depending on the speed
of your connection to the internet and the quality of service in your region.

In practice the time taken will be more than the figure above.
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4.2.2.2.2 Verifying the integrity of the uploaded files. When the upload of your files has
completed, you will be prompted with the MD5-sum of each file. You should generate an md5
sum for each uploaded file on your machine, paste it into the appropriate box in the prompt and
click the ”check” button. A popup will show you whether there is a match or not. Additionally the
check button will turn green upon success and red upon failure. Click the ”Close” button if you
have completed the checks or if you wish to skip this step.

Checking the integrity especially of large files is important, because it will give you immediate
feedback about whether your upload was successful or not. If not detected at upload time, a
damaged file will lead to errors later in the pipeline, wasting both valuable compute cycles and
even more importantly, your time. To generate an MD5 sum of your file you can use the ”md5”
shell command on a Mac, the ”md5sum” shell command on Unix systems or use freely available
md5-sum tools on windows, e.g. from http://www.winmd5.com/.

Figure 4.1: A dialogue will request the user put in locally generated MD5 checksum for the files
to identify any data curruption during the upload.

4.2.2.2.3 File filters in place for uploading As MG-RAST has been designed to work with
metagenomic and metatranscriptomic data sets, there is a filter in place trying to identify data sets
not suitable for MG-RAST. Those data sets will be painted in red and cannot be submitted.

Below we list the criteria for rejection

• protein sequences

MG-RAST is optimized to perform translation from DNA to proteins.

• reads shorter than 75 basepairs

The gene prediction stage performance deteriorates significantly with shorter reads.

• genomes
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Submissions with complete genomes or a small number of contigs are rejected as well. Here
our sister service RAST at http://rast.nmpdr.org should be used instead of MG-
RAST.

• files that are too small (sequence data less than 1Mbp)

Files that are too small for MG-RAST to properly function are rejected at the submission
stage. There is a minimal size requirement of 1 metagebase.

• corrupted files

If he number of unique identifiers is not matching the number of sequence records in a file.

• alignments

We cannot identify proteins from sequences containing alignment information.

• Colorspace

The tool chain does not function for ABIsolid sequences in colorspace, please translate to
standard FASTA.

• rar compressed files and Zip files over 4GB

We cannot decompress these files.

In addition we will filter at the upload stage any Word documents, Rich Text Format files and
all files without the extension .fna, .fasta, .fq, .fastq or .sff in their name.

Please note: We recommend computing an MD5 checksum and verifying that the checksum
computed by MG-RAST is identical to the locally computed checksum. This is the best way to
ensure data integrity.

4.2.2.2.3.1 De-Multiplexing for 454 and similar data sets MG-RAST performs the de-
multiplexing based on the presence of the barcode sequence at the beginning of the reads.

Assuming you have a sequence file testseq.fasta and your barcode file has tab-separated lines
like:

AAAAAAAA fileA

CCCCCCCC fileC

The demultiplexing step will split your sequence file into three files: fileA.fasta containing all the
reads that begin with AAAAAAAA, fileC.fasta containing all the reads that begin with CCCCC-
CCC, and testseq no MID tag.fasta containing reads which do not match either of the two.
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We note that demultiplexing for Illumina needs to be done outside the MG-RAST system.
Illumina barcodes work differently from 454 barcodes.

4.2.2.2.4 Managing the inbox All files uploaded to MG-RAST will be displayed in your inbox
and you can perform certain functions operations on them. Compressed and/or archived files can
be unpacked, SFF files can be converted to FASTQ and sequence data can be demultiplexed using
barcodes contained in uploaded files, files can also be deleted. When a sequence file is selected
some information about the sequence data is displayed. It is a good idea to check that the uploaded
files in your inbox match your local copies. The file MD5 checksum, file size, sequence count, and
basepair count can be used for this purpose.

4.2.2.3 Submission

The submission process allows you to create MG-RAST jobs using files in your inbox and is
designed to facilitate the creation of a large number of jobs easily.

4.2.2.3.1 Select metadata file We recommend you supply metadata for all your samples and
will assign a higher processing priority to samples with metadata and which will be made pub-
lic. Metadata files which will have successfully passed out validation step will be displayed for
selection. READ more on how to create a valid metadata file.

4.2.2.3.2 Select project All jobs created in MG-RAST will need to be placed in a project which
can be an existing project or a new one created by you during the submission. The project can be
specified one of 3 ways: in the metadata file if supplied, selected from the existing projects you
have access to, or a new project name can be entered into the text box.

4.2.2.3.3 Select sequence file(s) All the sequence files in your inbox will be displayed for
selection and job submission, each sequence file can be used to create a single MG-RAST job.

4.2.2.3.4 Choose pipeline options The MG-RAST analysis can be influenced by the options
selected here which affect dereplication, screening and quality filtering of the reads. The options
selected are applied to all the sequence files selected.

4.2.2.3.5 Submit job This is the final step after which the analysis pipeline takes over and the
processing begins. Once the job or jobs have been submitted all the files required to create them
will be removed from your inbox.
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You can monitor the progress of your jobs in ”My Data Summary” on the Browse Metagenomes
page.

4.2.3 The cmd-line uploader

The following syntax will allow uploading to MG-RAST from the command line.

curl -H "auth: webkey" -X POST -F "upload=@/path_to_file/metagenome.fasta" "http://api.metagenomics.anl.gov/inbox/upload" > curl_output.txt

where you need to substitute webkey with the unique string of text generated by MG-RAST for
your account. Your webkey is valid for a limited time period and ensures that the uploads you per-
form from the command line are recognized as belonging to your MG-RAST account and placed
in the correct inbox.

4.2.4 Managing the Inbox

The Inbox is a temporary storage location for sequence and metadata files prior to submission to
the pipeline. To protect us from any misuse of the facility, we have limited the Inbox to metadata
spreadsheets and sequence files.

Files are visible only to the uploading user and will automatically be deleted after 72 hours.

4.2.4.1 File processing options in the Inbox

• unpack selected Unpacks selected zip, gzip, or tar files.

• convert sff to fastq Converts selected sff files to fastq format. Only FASTQ and FASTA files
can be submitted to the system.

• demultiplex Demultiplexes selected files.

Note that this is only suitable for 454 type barcodes that are actual pre-fixes of the reads.
This approach does not work for the Illumina barcode approach (basically a third read for
each paired end read).

• join paired ends Joins overlapping paired-end reads.

Please note: After the actual upload is complete the system will compute the statistics shown
in Figure 4.3. Computing this information takes some time, so your data will not immediately be
visible after you uploaded it.
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Figure 4.2: The Inbox provides temporary storage before submitting data and limited editing
features.
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Figure 4.3: The information displayed by the inbox for one file (once selected).

4.2.4.2 Directory management operations for the Inbox

• update inbox

Refreshes the contents of your inbox.

• move selected

Moves the selected files into or out of a directory.

• delete selected

Deletes the selected files.

• create directory

Creates a new directory in your inbox.

• delete directory

Allows you to select and delete an empty directory.

Users should always double check the MD5 checksum for files that are uploaded to the system
to verify the integrity. Figure 4.3 shows the MD5 finger print that is computed upon upload for
each file.
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4.2.5 Generating metadata for the submission

MG-RAST uses questionnaires to capture metadata for each project with one or more samples.
Users download and fill out the questionnaire, then submit it. Questionnaires are validated for
completeness and compliance with the controlled vocabularies for certain fields automatically by
MG-RAST.

MG-RAST has implemented the use of Minimum Information about any (X) Sequence (MIxS)
[44] developed by the Genomic Standards Consortium (GSC). In addition to the minimal check-
lists, more detailed data can be captured in optional environmental packages.

We use simple spreadsheets to capture metadata, with a minimal number of required fields (in
red in the spreadsheets) and a number of optional fields. The spreadsheet is separated into multiple
tabs representing the different metadata categories. The MG-RAST metadata spreadsheet template
is available on the MG-RAST upload page or here ftp://ftp.metagenomics.anl.gov/
data/misc/metadata/MGRAST_MetaData_template_1.3.xlsx.

A filled out version of the spreadsheat is available here: ftp://ftp.metagenomics.

anl.gov/data/misc/metadata/MGRAST_MetaData_template_example.xlsx.
In Figure 4.4 we show the template tab for project and the required field labels (in red); in

essence your contact information.]

Figure 4.4: The project spreadsheet. In red are required fields. Note that the 2nd row contains
information on how to fill out the form.

Note: Use the third line in the spreadsheet and below as shown in Figure 4.6 to enter your data.
Do not attempt to alter the first two lines or delete them, they are read only. The first line contains
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Figure 4.5: The various tabs in the spreadsheet. Project, sample and one of library metagenome
or library mimarks survey are required.

the field labels and second line contains descriptions that can help explain how to fill out the fields,
along with what unit to use, e.g. temperature in Celsius and distance in meters.

Figure 4.6: The sample tab with 3 new samples (sample1, sample2 and sample3) added. Again
red text in the first row indicates required fields. Rows 1 and 2 cannot be altered.

Required sheets You need to fill out four sheets to describe your metadata:

1. project

This sheet has only one row, and describes a set of samples uploaded together; the other
sheets have one row per sample

2. sample

This sheet includes either the filename or metagenome name used for matching

3. library

either metagenome (for WGS and WXS) or mimarks-survey (for 16s amplicon)

4. environmental package

at least one of the environmental packages of suggested standard metadata. Choose the
package that best describes your dataset (e.g. water, human-skin, soil)
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The sample section (below) requires minimal information (including the sample name) about
where and when the sample was taken. Note that some fields in the spreadsheet must be filled out
with terms from a controlled vocabulary or in a certain way. Country and environment (biome, fea-
ture, material) fields require entries from curated ontologies, gazetteer and environmental ontology
respectively.

The sample tab with 3 new samples (sample1, sample2 and sample3) added. Again red text in
the first row indicates required fields.

Mandatory fields

• country United States of America, Netherlands, Australia, Uruguay

• latitude and longitude 106.84517, -104.60667, 28 42.306N, 88 24.099W, 45.30 N, 73.35 W

• biome Small lake biome, Tropical humid forests, Mangrove biome This term must be one of
the terms from the bioportal ontology. Terms that are not on this list are not valid.

• feature city, fish farm, livestock-associated habitat, marine habitat, ocean basin, microbial
mat This term must be one of the terms from the bioportal ontology. Terms that are not on
this list are not valid.

• material air, dust, volcanic soil, saliva, blood, dairy product, surface water, piece of grav-
elThis term must be one of the terms from the bioportal ontology. Terms that are not on this
list are not valid.

4.2.5.0.0.1 The library section captures technical data on the preparation and sequencing
done. Chose the library tab to fill out (metagenome for shotgun sequencing or mimarks-survey
for amplicon) based on the type of sequencing done. These are separated as different sequencing
techniques involved different metadata fields. Each row describes one library for one sample, the
samples need to have the identical sample name you used in the sample tab before.

The library metagenome tab, required fields in red. The file name field holds the filename
of the sequence file uploaded, or the filename to use for creating the demultiplexed file if you
uploaded a multiplexed sequence file and have barcode sequences in the spreadsheet. This is used
for mapping sequence files to metadata.

The metagenome name field holds the name of the metagenome you are submitting. If the
file name field is empty it will be used for mapping metadata to sequence files, in this case it would
need to match the uploaded sequence filename (not including file extension).

The investigation type field is required to be metagenome for shotgun metagenome samples
and mimarks-survey for amplicon studies (reflecting what tab was filled out).
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The type of sequencing instrument used is another required field values are e.g. Illumina, 454,
Ion Torrent, Sanger or assembled.

Again, only a limited number of fields are required. However, the more info you provide the
easier it is for you and others to understand any potential uses of your data and to understand why
results appear in a particular way. It might, for example, allow understanding of specific biases
caused by technology choices or sampled environments.

You can fill out one or more environmental metadata packages. Currently we provide support
for the following GSC environmental packages:

• Air

• Built Environment

• Host-associated

• Human-associated

• Human-oral

• Human-skin

• Human-vaginal

• Microbial mat/biofilm

• Miscellaneous natural or artificial environment

• Plant-associated

• Sediment

• Soil

• Wastewater sludge

• Water

We strongly encourage users to submit rich metadata but understand the effort required in
providing it. Using the environmental packages (which were designed and are used by practitioners
in the respective field) should make it reasonably simple to report the essential metadata required
to analyze the data. If there is no environmental package to report metadata for your specific
sample, please contact MG-RAST staff, we will work with the GSC [10] to create the required
questionnaire.
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4.3 How to work with projects and collections

Collections provide an efficient way to create multiple sets of metagenomes for analysis. If you
wanted e.g. to compare human gut to cow rumen samples, you probably want to see a dialogue
like this:

Figure 4.7: A view of the browse table with the collection column enabled. Clicking on the ”...”
at the right end of the table allows expanding the table columns.

Luckily MG-RAST v3 provides a mechanism to make this happen. Users can create collections
that are persistent across multiple sessions

Below we show how to define a collection that allows comparison of multiple data sets. Please
note that collections are just short-cuts to the actual samples, they can not be shared at this time.

Step 1: Start with the metadata browser (either on the front page or in the little menu block in
the top right hand corner) and click on the globe symbol. See Figure 4.8 for the symbol.

Step 2: This will take you to the Browser dialogue, showing a large number of metagenomes.
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Figure 4.8: The symbol for the MG-RAST metagenome browser

Figure 4.9: The MG-RAST metagenome browser

Step 3: Clicking on biome will allow selecting a specific Biome (here we pick Animal associ-
ated)

This results in the following list of metagenomes to be shown:
The list of samples (show above) still shows too many samples when restricted to just animal

associated metagenomes.
Step 4: To downselect, search for Twin to further restrict to samples from Peter Turnbaugh and

Jeffrey Gordons Human Twin study.
Step 5: Clicking on the black shopping cart symbol in the top right hand corner will allow the

creation of a new collection entry. The next step is naming the collection.
Here we name the collection Twin Study and hit OK.
Step 6: Once the collection is added, the new collection will appear in the list of collections (in

Your Data Summary).
Step 7: Use collection in the Metagenome selection on the Analysis page. It is possible to

do analysis on the metagenomes where they are compared individually, or, alternatively, you may
compare whole groups of metagenomes.
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Figure 4.10: The browser allows filtering by e.g. specific BIOME information.
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Figure 4.11: A reduced list of metagenomes for one BIOME.
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Figure 4.12: Selecting a specific project further reduces the number of data sets being displayed.

4.4 Understanding data sets – Has my sequencing worked?

Unfortunately not every sequencing run works equally well. Users of MG-RAST have provided
data with many different sources of error allowing us to provide a number of tools to identify the
most common errors.

The quality assessment tools described in 2.5 provide a good tool set for a first data quality
analysis. While there are many potential sources of error, some common problems can be easily
identified with just the nucleotide histograms, if your data exhibits patterns like the ones described
in 2.5 it is likely there were problems with sequencing.

4.4.1 Why are so many reads failing QC?

We frequently find data sets with high numbers of reads filtered out by the quality control. Below
we list the major reasons for filtered reads:

1. Artificial duplicate reads (ADRs)
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Figure 4.13: Saving a collection

The presence of significant amounts of ADRs hints at problems with a PCR step. Frequently
a problem with 454 runs, but also seen with other platforms, a set of DNA templates was
copied many times during a PCR step, often consuming up to 80% of the entire data set.

2. filtered reads

If you have selected screening against a host organism, e.g. the human genome, reads match-
ing that particular genome will be removed from the data set. This frequently consumes a
large fraction of the sequence run. There are in vitro techniques to minimize the amount of
host DNA in your sample, see [37].

3. filter rRNA reads in metatranscriptomes

If you are trying to analyze a metatranscriptome, reducing the amount of ribosomal is essen-
tial. Unless an in vitro rRNA knockdown method is applied, up to 97% of all reads will be
ribosomal.
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Figure 4.14: A list of collections

4.5 How to drill down using the workbench

One of the new features of MGRAST v3 is the workbench. It is the main mechanism for exchang-
ing subsets of data between analysis views. It also allows you to download the FASTA files of a
selection of proteins.

When you initially go to the analysis page (see 3.9) , your workbench will be empty. It is
displayed as the leftmost tab in the data tabular view. So how do you get data into the workbench?
There are two simple ways to select data subsets from any generated table or from the drilldown
of a barchart.

Try this example: Start by selecting the lean and obese mouse cecum samples (MG-RAST
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Figure 4.15: Collections can be compared as groups.

IDs 4440463.3 and 4440464.3) [39] in the data selection and creating a table. To do this go to
the analysis page and select the analysis view Organism Classification. Expand the metagenome
selection by clicking the plus symbol next to metagenomes. Select public from the dropdown-box
(to view only public data sets) and type mouse into the filter box. Select the two samples and click
the button with the right arrow, then the ok button. The default data visualization is table, so you
can click the generate button (Figure 4.16).

After a short wait, a new tab will appear in the tabview below (see Figure 20), showing the data
table with organism classifications for the two samples. The last column of this table will have a
button labeled to workbench as the column header. Each cell in that column will have a checkbox.
Checking a checkbox and clicking the to workbench-button will send the proteins identified by
that row to the workbench (Figure 19). Note that you only have one workbench and putting a new
set of proteins into it will replace the current content. So what if I want to select all Bacteria, do
I really need to click through all those checkboxes? No you can use the grouping feature of the
table, so you only have to click one checkbox per metagenome.

Above the table you will find a dropdown-box labeled group table by (Figure 4.17). Select
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Figure 4.16: Screenshot of the Analysis Page and Workbench tab. Note that users can search
and select metagenomes to analyze, the annotation cources and par ameters to set, along with the
analysis and visualization they want to perform.
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domain and the table will be grouped, so there is only one row per metagenome and domain.

Figure 4.17: Using the tables to group results.

Now check the two boxes in the Bacteria rows and click the to workbench button (see Figure
4.18.

A pop-up message will appear, telling you how many proteins have been sent to the workbench.
If you take a look at the tabular view now, you will notice that the workbench tab shows the number
of proteins it currently contains (see Figure 4.19). If you click on that tab, you will get information
about what the workbench contains. On this tab you will also find a download as FASTA button,

Aside from being able to download the sequences of your selected proteins, you can also use
them to generate other visualizations. This includes switching from organism to functional classi-
fication. To to this, simply check the use proteins from workbench checkbox in the data selection
when generating a new visualization, e.g. a circular tree using the proteins we just buffered.

The table is not the only visualization that allows to put a subselection into the workbench. You
can also use the barchart to do this (Figure 4.20). Simply click on the to workbench button next to
the headline of a drilldown. Note that you cannot put the topmost barchart into the workbench, as
it is not yet a subselection of proteins.

Figure 4.18: Use the table to select results you want to add to your workbench for further analyses.
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Figure 4.19: View of the workbench with the summary of the proteins that have been added.

Figure 4.20: In addition to the results table, users can download results or add to their workbench
from barcharts.

4.6 Downloads from the workbench

The workbench feature stores sub-selections of data and allows those to be used as input for further
selection or displays, e.g. select all E. coli reads and then display the functional categories present
just in E. coli reads across multiple data sets. In addition the workbench allows downloading the
annotated reads for the sub-selection stored in the workbench as fasta (Figure 4.21).

Once processing data sets in MG-RAST is finished a download page is created for the project.
On this page all data products created during the computation are made available as files. In
addition, datasets which have been published in MG-RAST have links to an ftp site at the top of
this page where you can download additional information.

4.7 Viewing Evidence

For individual proteins, the MG-RAST page allows users to retrieve the sequence alignments un-
derlying the annotation transfers (see Figure 4.22). Using the M5NR [41] technology users can
retrieve alignments against the database of interest with no additional overhead.

89



Figure 4.21: The workbench facilitates the download of selected reads using the name space of
the selection.

service Web Interface API FTP server comment
public data access Y Y Y
private data access Y Y N
upload Y T N Unless specifically arranged by help desk

Table 4.2: Differences between the various access modalities

4.8 MG-RAST Outputs

There are three ways to access the data in MG-RAST:

• through the website (which is authenticated)

• through the MG-RAST API (which is also authenticated)

• through the ftp site (which is not authenticated, and for which we only put data in public
projects)

Access to private or shared data requires either password access via the web interface or a
web-key generated for access via the API.

If you data is private or merely shared the web site and the API are the only two ways to get to
it. A way around this is making the data public.

All of the data files available on the website should be available via the urls returned by
a query to http://api.metagenomics.anl.gov/analysisset/mgm4450212.3 This returns a JSON data
structure with urls for all the data files, for instance 900.abundance.organism.gz can be retrieved
from http://api.metagenomics.anl.gov/analysisset/mgm4450212.3-900-5

(This is a public job, the private jobs can be accessed by providing the webkey in the auth field
in the GET request.)
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Figure 4.22: BLAT hit details with alignment.

In general we preserve the inputs and outputs for every stage of the pipeline for download and
to ensure reproducibility. As an example of why this is useful is the use of dereplicated reads
for error estimation by DRISEE (see 2.3.3) or the Lowest Common Ancestor (LCA) (see 2.6.3)
algorithm being used to re-interpret the similarities for a given cluster.

4.8.1 Data products on the web site

4.8.1.1 Spreadsheets available on the web pages

Many of the web pages provide spreadsheets for download with the information rendered into
tables or graphical displays.

While most of the graphics can be downloaded directly, some require creating a static version
for download (which can be achieve through a button next to the graphic.)

Note that the option to use a screenshot will provide images at screen resolution.

91



4.8.1.2 BIOM file format exports

From the table on the analysis page, users can download BIOM [23] formatted streams, reflecting
the paramter choices made. Using this approach users can download abundance profiles in BIOM
format. This enables downstream processing with BIOM compliant tools e.g. QIIME [5].

4.8.1.3 Sequence files via the workbench

The workbench allows download of small subsets of sequences with annotations.

4.8.2 The FTP server

All public data is made available on the FTP server.
The FTP server provides a number of services:

• projects

This is the are where we make public data avaialable for download, sorted into projects.

• data

Data created to enable MG-RAST e.g. the M5NR is made available here

• tools

Tools developed by the MG-RAST team will be made available here in addition to github.

• private

This is a private upload area. MG-RAST help desk staff will provide a private upload loca-
tion for you in certain situations.

A project directory for ftp://ftp.metagenomics.anl.gov/projects/128/ is shown
in Figure 4.23.

4.8.3 Downloads

One of the critical insights when developing MG-RAST version 3 was the need to make a maxi-
mum number of data products available for download for downstream analysis. For this purpose
we have created the download page that contains all automatically created data products in a single
location for each metagenome. In addition a global download page provides access to all public
data sets grouped by projects.
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Figure 4.23: Listing of the project directory for ftp://ftp.metagenomics.anl.gov/projects/128/

We list the data products available on the download page for each metagenome using a specific
example (MG-RAST ID: 4465825.3) in the Appendix (see Appendix A.

The general paradigm is to make all files available that are generated during the automated
analysis, in addition the user submitted data and metadata are made available.
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Chapter 5

Putting it all in perspective

5.1 Discussion

We have described MG-RAST, a community resource for the analysis of metagenomic sequence
data. We have developed a new pipeline and environment for automated analysis of shotgun
metagenomic data, as well as a series of interactive tools for comparative analysis. The pipeline
is also being used for the analysis of metatranscriptome data as well as amplicon data of various
kinds. This service is being used by thousands of users worldwide, many contributing their data
and analysis results to the community. We believe that community resources, such as MG-RAST,
will fill a vital role in the bioinformatics ecosystem in the years to come.

MG-RAST has become a community clearinghouse for metagenomic data and analysis, with
over 12,000 public data sets that can be freely used. Because analysis was performed in a uniform
way, these data sets can be used as building blocks for new comparative analysis; so long as
new data sets are analyzed similarly, results are robustly comparable between new and old data set
analysis. These data sets (and the resulting analysis data products) are made available for download
and reuse as well.

Community resources like MG-RAST provide an interesting value proposition to the metage-
nomics community: First, it enables low-cost meta-analysis. Users utilize the data products in
MG-RAST as a basis for comparison without the need to re-analyze every data set used in their
studies. The high computational cost of analysis [43] makes pre-computation a prerequisite for
large scale meta-analyses. In 2001, Angiuli et al. [1], determined the real currency cost of re-
analysis for the over 12,000 data sets openly available on MG-RAST to be in excess of 30 million
US-dollars if Amazons EC2 platform is used. This figure doesnt consider the 66,000 private data
sets that have been analyzed with MG-RAST.

Second, it provides incentives to the community to adopt standards, both in terms of metadata
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and analysis approaches. Without this standardization, data products arent readily reusable, and
computational costs quickly become unsustainable. We are not arguing that a single analysis is
necessarily suitable for all users, rather, we are pointing out that if one particular type of analysis
is run for all data sets, the results can be efficiently reused, amortizing costs. Open access to data
and analyses foster community interactions that make it easier for researchers efforts to achieve
consensus with respect to establishing best practises as well as identifying methods and analyses
that could provide misleading results.

Third, community resources drive increased efficiency and computational performance. Com-
munity resources consolidate the demand for analysis resources sufficiently to drive innovation in
algorithms and approaches. Due to this demand, the MG-RAST team has needed to scale the ef-
ficiency of their pipeline by a factor of nearly 1000 over the last four years. This drive has caused
improvements in gene calling, clustering, sequence quality analysis, as well as many other areas. In
less specialized groups with less extreme computational needs, this sort of efficiency gain would
be difficult to achieve. Moreover, the large quantities of data sets that flow through the system
have forced the hardening of the pipeline against a large variety of sequence pathology types that
wouldnt be readily observed in smaller systems.

We believe that our experiences in the design and operation of MG-RAST are representative
of bioinformatics as a whole. The community resource model is critical if we are to benefit from
the exponential growth in sequence data. This data has the potential to enable new insights into
the world around us, but only if we can analyze it effectively. It is only due to this approach that
we have been able to scale to the demands of our users effectively, analyzing over 200 billion
sequences thus far.

We note that scaling to the required throughput by adding hardware to the system or simply
renting time using an unoptimized pipeline on e.g. Amazons EC2 machine would not be econom-
ically feasible. The real currency cost on EC2 for the data currently analyzed in MG-RAST (26
Terabasepairs) would be in excess of 100 million US dollars using an unoptimized workflow like
CLOVR [1].

All of MG-RAST is open source and available on https://github.com/MG-RAST.

5.2 Future Work

While MG-RAST v3 is a substantial improvement over prior systems, much work remains to be
done. Data set sizes continue to increase at an exponential pace. Keeping up with this change
remains a top priority, as metagenomics users continue to benefit from increased resolution of mi-
crobial communities. Upcoming versions of MG-RAST will include: (1) mechanisms for speeding
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pipeline up using data reduction strategies that are biologically motivated; (2) opening up the data
ecosystem via an API that will enable third-party development and enhancements; (3) providing
distributed compute capabilities using user-provided resources; as well as (4) providing virtual
integration of local data sets to allow comparison between local data and shared data without re-
quiring full integration.

5.2.1 Roadmap

We maintain a rough roadmap for future version of MG-RAST.

version 3.4

• web services API

• R client

• provide alpha version of MG-RAST remote compute client (using VMs)

3.5

• provide reviewer access tokens

• consolidate all SQL onto PostGRES

• provide beta version of MG-RAST remote compute client (using VMs)

• include IPython based notebooks for analysis

• use AWE for all computations and SHOCK for all pipeline storage

• multi-metagenome recruitment plot

4.0

• re-write web interface to support many browsers

• BAM upload support

• BAM download support

• variation study support

• convert all file access to SHOCK
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5.0

• provide federated SHOCK system

• provide an assembly based pipeline
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Glöckner. SILVA: a comprehensive online
resource for quality checked and aligned
ribosomal RNA sequence data compati-
ble with ARB. Nucleic acids research,
35(21):7188–7196, December 2007.

[30] K. D. Pruitt, T. Tatusova, and D. R. Ma-
glott. NCBI reference sequences (Ref-
Seq): a curated non-redundant sequence
database of genomes, transcripts and pro-
teins. Nucleic Acids Res, 35(Database is-
sue), January 2007.

[31] J. Reeder and R. Knight. The ’rare bio-
sphere’: a reality check. Nat Methods,
6(9):636–7, 2009.

[32] Mina Rho, Haixu Tang, and Yuzhen Ye.
Fraggenescan: Predicting genes in short
and error-prone reads,. NAR, (in print),
2009.

[33] C. S. Riesenfeld, P. D. Schloss, and J. Han-
delsman. Metagenomics: genomic analy-
sis of microbial communities. Annu Rev
Genet, 38:525–52, 2004.

[34] E. E. Snyder, N. Kampanya, J. Lu,
E. K. Nordberg, H. R. Karur, M. Shukla,
J. Soneja, Y. Tian, T. Xue, H. Yoo,
F. Zhang, C. Dharmanolla, N. V. Dongre,
J. J. Gillespie, J. Hamelius, M. Hance,
K. I. Huntington, D. Jukneliene, J. Koziski,
L. Mackasmiel, S. P. Mane, V. Nguyen,
A. Purkayastha, J. Shallom, G. Yu, Y. Guo,
J. Gabbard, D. Hix, A. F. Azad, S. C.
Baker, S. M. Boyle, Y. Khudyakov, X. J.

Meng, C. Rupprecht, J. Vinje, O. R.
Crasta, M. J. Czar, A. Dickerman, J. D.
Eckart, R. Kenyon, R. Will, J. C. Se-
tubal, and B. W. Sobral. PATRIC: the VBI
PathoSystems resource integration center.
Nucleic Acids Res, 35(Database issue),
January 2007.

[35] Terry Speed. Statistical Analysis of Gene
Expression Microarray Data. Chapman
and Hall/CRC, 2003.

[36] R. L. Tatusov, N. D. Fedorova, J. D. Jack-
son, A. R. Jacobs, B. Kiryutin, E. V.
Koonin, D. M. Krylov, R. Mazumder, S. L.
Mekhedov, A. N. Nikolskaya, B. S. Rao,
S. Smirnov, A. V. Sverdlov, S. Vasudevan,
Y. I. Wolf, J. J. Yin, and D. A. Natale.
The cog database: an updated version in-
cludes eukaryotes. BMC Bioinformatics,
4:41, 2003.

[37] Torsten Thomas, Jack Gilbert, and Folker
Meyer. Metagenomics - a guide from sam-
pling to data analysis. Microbial Informat-
ics and Experimentation, 2(1):3, 2012.

[38] W. L. Trimble, K. P. Keegan, M. D’Souza,
A. Wilke, J. Wilkening, J. Gilbert, and
F. Meyer. Short-read reading-frame pre-
dictors are not created equal: sequence er-
ror causes loss of signal. BMC Bioinfor-
matics, 13(1):183, 2012.

[39] P. J. Turnbaugh, R. E. Ley, M. A. Ma-
howald, V. Magrini, E. R. Mardis, and J. I.
Gordon. An obesity-associated gut mi-
crobiome with increased capacity for en-

101



ergy harvest. Nature, 444(7122):1027–31,
2006.

[40] W3C. File api; w3c working draft 25 oc-
tober 2012, 2012.

[41] A. Wilke, T. Harrison, J. Wilkening,
D. Field, E. M. Glass, N. Kyrpides,
K. Mavrommatis, and F. Meyer. The
m5nr: a novel non-redundant database
containing protein sequences and annota-
tions from multiple sources and associated
tools. BMC Bioinformatics, 13:141, 2012.

[42] A. Wilke, J. Wilkening, E.M. Glass, N. De-
sai, and F. Meyer. An experience report:
porting the mg-rast rapid metagenomics
analysis pipeline to the cloud. Concur-
rency and Computation: Practice and Ex-
perience, 23(17):22502257, 2011.

[43] J. Wilkening, A. Wilke, Narayan Desai,
and Folker Meyer. Using clouds for
metagenomics: A case study. In IEEE
Cluster 2009, 2009.

[44] Pelin Yilmaz, Renzo Kottmann, Dawn
Field, Rob Knight, James R. Cole,
Linda Amaral-Zettler, Jack A. Gilbert,
Ilene Karsch-Mizrachi, Anjanette John-
ston, Guy Cochrane, Robert Vaughan,
Christopher Hunter, Joonhong Park, Nor-
man Morrison, Phillipe Rocca-Serra, Pe-
ter Sterk, Mani Arumugam, Laura Baum-
gartner, Bruce W. Birren, Martin J.
Blaser, Vivien Bonazzi, Tim Booth, Peer
Bork, Frederic D. Bushman, Pier Luigi
Buttigieg, Patrick Chain , Elizabeth K.

Costello, Heather Huot-Creasy, Peter
Dawyndt, Todd DeSantis , Noah Fierer,
Jed Fuhrman, Rachel E. Gallery ,
Dirk Gevers , Richard A. Gibbs ,
Michelle Gwinn Giglio , Inigo San Gil
, Antonio Gonzalez3 , Jeffrey I. Gor-
don, Robert Guralnick , Wolfgang Han-
keln , Sarah Highlander , Philip Hugen-
holtz, Janet Jansson , Scott T. Kelley ,
Jerry Kennedy , Dan Knights , Omry Ko-
ren , Justin Kuczynski , Nikos Kyrpi-
des , Robert Larsen , Christian L. Lauber
, Teresa Legg , Ruth E. Ley , Cather-
ine A. Lozupone , Wolfgang Ludwig
, Donna Lyons , Eamonn Maguire ,
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Appendix A

The downloadable files for each data set

Uploaded File(s) DNA (4465825.3.25422.fna)
Uploaded nucleotide sequence data in FASTA format. Preprocessing
Depending on the options chosen, the preprocessing step filters sequences based on length,

number of ambiguous bases and quality values if available.
passed, DNA (4465825.3.100.preprocess.passed.fna)
A FASTA formatted file containing the sequences which were accepted and will be passed

on to the next stage of the analysis pipeline.
removed, DNA (4465825.3.100.preprocess.removed.fna)
A FASTA formatted file containing the sequences which were rejected and will not be

passed on to the next stage of the analysis pipeline. Dereplication
The optional dereplication step removes redundant technical replicate sequences from the

metagenomic sample. Technical replicates are identified by binning reads with identical first
50 base-pairs. One copy of each 50-base-pair identical bin is retained.

passed, DNA (4465825.3.150.dereplication.passed.fna)
A FASTA formatted file containing one sequence from each bin which will be passed on

to the next stage of the analysis pipeline.
removed, DNA (4465825.3.150.dereplication.removed.fna)
A FASTA formatted file containing the sequences which were identified as technical repli-

cates and will not be passed on to the next stage of the analysis pipeline. Screening
The optional screening step screens reads against model organisms using bowtie to remove

reads which are similar to the genome of the selected species.
passed, DNA (4465825.3.299.screen.passed.fna)
A FASTA formatted file containing the reads which which had no similarity to the selected

genome and will be passed on to the next stage of the analysis pipeline. Prediction of protein
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coding sequences
Coding regions within the sequences are predicted using FragGeneScan, an ab-initio

prokaryotic gene calling algorithm. Using a hidden Markov model for coding regions and
non-coding regions, this step identifies the most likely reading frame and translates nucleotide
sequences into amino acids sequences. The predicted coding regions, possibly more than one
per fragment, are called features.

coding, Protein (4465825.3.350.genecalling.coding.faa)
A amino-acid sequence FASTA formatted file containing the translations of the predicted

coding regions.
coding, DNA (4465825.3.350.genecalling.coding.fna)
A nucleotide sequence FASTA formatted file containing the predicted coding regions.

RNA Clustering
Sequences from step 2 (before dereplication) are pre-screened for at least 60% identity to

ribosomal sequences and then clustered at 97% identity using UCLUST. These clusters are
checked for similarity against the ribosomal RNA databases (Greengenes [8], LSU and SSU
from [29], and RDP [6]).

rna97, DNA (4465825.3.440.cluster.rna97.fna)
A FASTA formatted file containing sequences that have at least 60% identity to ribosomal

sequences and are checked for RNA similarity.
rna97, Cluster (4465825.3.440.cluster.rna97.mapping)
A tab-delimited file that identifies the sequence clusters and the sequences that comprise

them.
The columns making up each line in this file are:
Cluster ID, e.g. rna97 998
Representative read ID, e.g. 11909294
List of IDs for other reads in the cluster, e.g. 11898451,11944918
List of percentage identities to the representative read sequence, e.g. 97.5%,100.0%
RNA similarities
The two files labelled expand are comma- and semicolon- delimited files that provide the

mappings from md5s to function and md5s to taxonomy:
annotated, Sims (4465825.3.450.rna.expand.lca)
annotated, Sims (4465825.3.450.rna.expand.rna)
Packaged results of the blat search against all the DNA databases with MD5 value of the

database sequence hit followed by sequence or cluster ID, similarity information, annotation,
organism, database name.

raw, Sims (4465825.3.450.rna.sims)
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This is the similarity output from BLAT. This includes the identifier for the query which is
either the FASTA id or the cluster ID, and the internal identifier for the sequence that it hits.

The fields are in BLAST m8 format:
Query id (either fasta ID or cluster ID), e.g. 11847922
Hit id, e.g. lcl—501336051b4d5d412fb84afe8b7fdd87
percentage identity, e.g. 100.00
alignment length, e.g. 107
number of mismatches, e.g. 0
number of gap openings, e.g. 0
q.start, e.g. 1
q.end, e.g. 107
s.start, e.g. 1262
s.end, e.g. 1156
e-value, e.g. 1.7e-54
score in bits, e.g. 210.0
filtered, Sims (15:04 4465825.3.450.rna.sims.filter)
This is a filtered version of the raw Sims file above that removes all but the best hit for

each data source. Gene Clustering
Protein coding sequences are clustered at 80% identity with UCLUST. This process does

not remove any sequences but instead makes the similarity search step easier. Following the
search, the original reads are loaded into MG-RAST for retrieval on-demand.

aa90, Protein (4465825.3.550.cluster.aa90.faa)
An amino acid sequence FASTA formatted file containing the translations of one sequence

from each cluster (by cluster ids starting with aa90 ) and all the unclustered (singleton) se-
quences with the original sequence ID.

aa90, Cluster (4465825.3.550.cluster.aa90.mapping)
A tab-separated file in which each line describes a single cluster.
The fields are:
Cluster ID, e.g. aa90 3270
protein coding sequence ID including hit location and strand, e.g. 11954908 1 121 +
additional sequence ids including hit location and strand, e.g.

11898451 1 119 +,11944918 19 121 +
sequence % identities, e.g. 94.9%,97.0%
Protein similarities
annotated, Sims (4465825.3.650.superblat.expand.lca)
The expand.lca file decodes the MD5 to the taxonomic classification it is annotated with.
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The format is:
md5(s), e.g. cf036dfa9cdde3a8a4c09d7fabfd9ba5;1e538305b8319dab322b8f28da82e0a1
feature id (for singletons) or cluster id of hit including hit location and strand, e.g.

11857921 1 101 -
alignment %, e.g. 70.97;70.97
alignment length, e.g. 31;31
E-value, e.g. 7.5e-05;7.5e-05
Taxonomic string, e.g. Bacteria;Actinobacteria;Actinobacteria

(class);Coriobacteriales;Coriobacteriaceae;Slackia;Slackia exigua;-
annotated, Sims (4465825.3.650.superblat.expand.protein)
Packaged results of the blat search against all the protein databases with MD5 value of the

database sequence hit followed by sequence or cluster ID, similarity information, functional
annotation, organism, database name.

Format is:
md5 (identifier for the database hit), e.g. 88848aa7224ca2f3ac117e7953edd2d9
feature id (for singletons) or cluster ID for the query, e.g. aa90 22837
alignment % identity, e.g. 76.47
alignment length, e.g. 34
E-value, e.g. 1.3e-06
protein functional label, e.g. SsrA-binding protein
Species name associated with best protein hit, e.g. Prevotella bergensis DSM 17361 Ref-

Seq 585502
raw, Sims (4465825.3.650.superblat.sims)
Blat output with sequence or cluster ID, md5 value for the sequence in the database and

similarity information.
filtered, Sims (4465825.3.650.superblat.sims.filter)
Blat output filtered to take only the best hit from each data source.
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Appendix B

Terms of Service

• MG-RAST is a web-based computational metagenome analysis service provided on a best-
effort basis. We strive to provide correct analysis, privacy, but can not guarantee correctness
of results, integrity of data or privacy. That being said, we are not responsible for any HIPPA
regulations regarding human samples uploaded by users. We will try to provide as much
speed as possible and will try to inform users about wait times. We will inform users about
changes to the system and the underlying data.

• We reserve the right to delete non public data sets after 120 days.

• We reserve the right to reject data set that are not complying with the purpose of MG-RAST.

• We reserve the right to perform additional data analysis (e.g. search for novel sequence
errors to improve our sequence quality detection, clustering to improve sequence similarity
searches etc.) AND in certain cases utilize the results. We will NOT release user provided
data without consent and or publish on user data before the user.

• User acknowledges the restrictions stated about and will cite MG-RAST when reporting on
their work.

• User acknowledges the fact that data sharing on MG-RAST is meant as a pre-publication
mechanism and we strongly encourage users to make data publicly accessible in MG-RAST
once published in a journal (or after 120 days).

• User acknowledges that data (including metadata) provided is a) correct and b) user either
owns the data or has the permission of the owner to upload data and or publish data on
MG-RAST.
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• We reserve the right to curate and update public meta data.

• We reserve the right at any time to modify this agreement. Such modifications and additional
terms and conditions will be effective immediately and incorporated into this agreement.
MG-RAST will make a reasonable effort to contact users via email of any changes and your
continued use of MG-RAST will be deemed acceptance thereof.
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Appendix C

Tools and data used by MG-RAST

The MG-RAST team is happy to acknowledge the use of the following great software and data
products: Databases

MG-RAST uses a number of protein and ribosomal RNA databases integrated into the M5NR
[41] (Wilke et al, BMC Bioinformatics 2012. Vol 13, No. 151) non-redundant database using the
M5NR tools.

C.1 Databases

C.1.1 Protein databases

• The SEED [28] (Overbeek et al., NAR, 2005, Vol. 33, Issue 17)

• GenBank [3] (Benson et al., NAR, 2011, Vol. 39, Database issue)

• RefSeq [30] (Pruitt et al., NAR, 2009, Vol. 37, Database issue)

• IMG/M (Markowitz et al., NAR, 2008, Vol. 36, Database issue)

• UniProt [21] (Apweiler et al., NAR, 2011, Vol. 39, Database issue)

• eggNOGG [15] (Muller et al., NAR, 2010, Vol. 38, Database issue)

• KEGG [16] (Kanehisa et al., NAR, 2008, Vol. 36, Database issue)

• PATRIC [34] (Gillespie et al., Infect. Immun., 2011, Vol. 79, no. 11)
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C.1.2 Ribosomal RNA databases:

• greengenes [8] (DeSantis et al., Appl Environ Microbiol., 2006, Vol. 72, no. 7)

• SILVA [29] (Pruesse et al., NAR, 2007, Vol. 35, issue 21)

• RDP [6] (Cole et al., NAR, 2009, Vol. 37, Database issue)

C.2 Software

C.2.1 Bioinformatics codes:

• FragGeneScan [32] (Rho et al, NAR, 2010, Vol. 38, issue 20)

• BLAT [18] (J. Kent, Genome Res, 2002, Vol. 12, No. 4)

• QIIME [5] (Caporaso et al, Nature Methods, 2010, Vol. 7, No. 5) (we also use uclust that is
part of QIIME)

• Biopython

• Bowtie [20] (Langmead et al., Genome Biol. 2009, Vol 10, issue 3)

• sff extract, Jose Blanca and Joaquin Caizares

• Dynamic Trim, part of SolexaQA, [7] (Cox et al., BMC Bioinformatics, 2011, Vol. 11, 485)

• FastqJoin

C.2.2 Web/UI tools:

• Krona [27] (Ondov et. al. BMC Bioinformatics, 2011, Vol. 12, 385)

• Raphal JavaScript Library (Dmitry Baranovskiy)

• jQuery

• Circos (Krzywinski et al., Genome Res. 2009, Vol. 19)

• cURL
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C.2.3 Behind the scenes:

• Perl

• Python

• R

• Googles V8 JavaScript engine

• Node.js

• nginx

• OpenStack
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Glossary

16s 16S ribosomal RNA (or 16S rRNA) is a component of the 30S small subunit of prokaryotic
ribosomes. 4, 5, 74, 114

ADR Artificial duplicate read. 4, 16, 20, 114

DNA Deoxyribonucleic acid. 4, 114

EC2 Amazon Elastic Compute Cloud. 4, 5, 114

MD5 The MD5 message-digest algorithm is a widely used cryptographic hash function that pro-
duces a 128-bit (16-byte) hash value. Specified in RFC 1321, MD5 has been utilized in a
wide variety of security applications, and is also commonly used to check data integrity.. 4,
32, 66–68, 71, 101–103, 112, 114

RNA Ribonucleic acid. 4, 21, 114

rRNA ribosomal ribonucleic acid. 4, 12, 15, 19, 114

SEED The SEED effort led by Ross Overbeek is a systematic annotation effort for prokaryotic
genomes using Subsystems.. 4, 7, 15, 17, 18, 29, 38, 39, 42, 60, 106, 110, 111, 114

Subsystem A subsystem is a set of functional roles that an annotator has decided should be
thought of as related. Frequently, subsystems represent the collection of functional roles that
make up a metabolic pathway, a complex (e.g., the ribosome), or a class of proteins (e.g.,
two-component signal-transduction proteins within Staphylococcus aureus). Construction of
a large set of curated populated subsystems is at the center of the SEED annotation efforts..
4, 17, 18, 29, 42, 52, 110, 114
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